» Articles » PMID: 32286452

Deep Learning Predicts Total Knee Replacement from Magnetic Resonance Images

Overview
Journal Sci Rep
Specialty Science
Date 2020 Apr 15
PMID 32286452
Citations 44
Authors
Affiliations
Soon will be listed here.
Abstract

Knee Osteoarthritis (OA) is a common musculoskeletal disorder in the United States. When diagnosed at early stages, lifestyle interventions such as exercise and weight loss can slow OA progression, but at later stages, only an invasive option is available: total knee replacement (TKR). Though a generally successful procedure, only 2/3 of patients who undergo the procedure report their knees feeling "normal" post-operation, and complications can arise that require revision. This necessitates a model to identify a population at higher risk of TKR, particularly at less advanced stages of OA, such that appropriate treatments can be implemented that slow OA progression and delay TKR. Here, we present a deep learning pipeline that leverages MRI images and clinical and demographic information to predict TKR with AUC 0.834 ± 0.036 (p < 0.05). Most notably, the pipeline predicts TKR with AUC 0.943 ± 0.057 (p < 0.05) for patients without OA. Furthermore, we develop occlusion maps for case-control pairs in test data and compare regions used by the model in both, thereby identifying TKR imaging biomarkers. As such, this work takes strides towards a pipeline with clinical utility, and the biomarkers identified further our understanding of OA progression and eventual TKR onset.

Citing Articles

Estimating time-to-total knee replacement on radiographs and MRI: a multimodal approach using self-supervised deep learning.

Cigdem O, Chen S, Zhang C, Cho K, Kijowski R, Deniz C Radiol Adv. 2025; 1(4):umae030.

PMID: 39744045 PMC: 11687945. DOI: 10.1093/radadv/umae030.


A Preliminary Study of Quantitative MRI Cartilage Loss Fraction and Its Association With Future Arthroplasty Using the Osteoarthritis Initiative Database.

Jo S, Sebro R, Zhang L, Wang Z, Chang L, Hochberg M Cureus. 2024; 16(7):e64279.

PMID: 39130899 PMC: 11315619. DOI: 10.7759/cureus.64279.


The role of obesity and adipose tissue dysfunction in osteoarthritis pain.

Binvignat M, Sellam J, Berenbaum F, Felson D Nat Rev Rheumatol. 2024; 20(9):565-584.

PMID: 39112603 DOI: 10.1038/s41584-024-01143-3.


Artificial intelligence in total and unicompartmental knee arthroplasty.

Longo U, De Salvatore S, Valente F, Villa Corta M, Violante B, Samuelsson K BMC Musculoskelet Disord. 2024; 25(1):571.

PMID: 39034416 PMC: 11265144. DOI: 10.1186/s12891-024-07516-9.


Radiographic Findings Associated With Mild Hip Dysplasia in 3869 Patients Using a Deep Learning Measurement Tool.

Jang S, Driscoll D, Anderson C, Sokrab R, Flevas D, Mayman D Arthroplast Today. 2024; 28:101398.

PMID: 38993836 PMC: 11237356. DOI: 10.1016/j.artd.2024.101398.


References
1.
Kremers H, Larson D, Crowson C, Kremers W, Washington R, Steiner C . Prevalence of Total Hip and Knee Replacement in the United States. J Bone Joint Surg Am. 2015; 97(17):1386-97. PMC: 4551172. DOI: 10.2106/JBJS.N.01141. View

2.
Cross M, Smith E, Hoy D, Nolte S, Ackerman I, Fransen M . The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014; 73(7):1323-30. DOI: 10.1136/annrheumdis-2013-204763. View

3.
Lawrence R, Felson D, Helmick C, Arnold L, Choi H, Deyo R . Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008; 58(1):26-35. PMC: 3266664. DOI: 10.1002/art.23176. View

4.
Kellgren J, Lawrence J . Radiological assessment of osteo-arthrosis. Ann Rheum Dis. 1957; 16(4):494-502. PMC: 1006995. DOI: 10.1136/ard.16.4.494. View

5.
Ringdahl E, Pandit S . Treatment of knee osteoarthritis. Am Fam Physician. 2011; 83(11):1287-92. View