» Articles » PMID: 32286306

Chronic Activation of Hexosamine Biosynthesis in the Heart Triggers Pathological Cardiac Remodeling

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Apr 15
PMID 32286306
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

The hexosamine biosynthetic pathway (HBP) plays critical roles in nutrient sensing, stress response, and cell growth. However, its contribution to cardiac hypertrophic growth and heart failure remains incompletely understood. Here, we show that the HBP is induced in cardiomyocytes during hypertrophic growth. Overexpression of Gfat1 (glutamine:fructose-6-phosphate amidotransferase 1), the rate-limiting enzyme of HBP, promotes cardiomyocyte growth. On the other hand, Gfat1 inhibition significantly blunts phenylephrine-induced hypertrophic growth in cultured cardiomyocytes. Moreover, cardiac-specific overexpression of Gfat1 exacerbates pressure overload-induced cardiac hypertrophy, fibrosis, and cardiac dysfunction. Conversely, deletion of Gfat1 in cardiomyocytes attenuates pathological cardiac remodeling in response to pressure overload. Mechanistically, persistent upregulation of the HBP triggers decompensated hypertrophy through activation of mTOR while Gfat1 deficiency shows cardioprotection and a concomitant decrease in mTOR activity. Taken together, our results reveal that chronic upregulation of the HBP under hemodynamic stress induces pathological cardiac hypertrophy and heart failure through persistent activation of mTOR.

Citing Articles

Multiomic analyses reveal enriched glycolytic processes in β-myosin heavy chain-expressed cardiomyocytes in early cardiac hypertrophy.

Yeh H, Chang Y, Chang Y, Lu M, Chen Y, Lee C J Mol Cell Cardiol Plus. 2025; 1():100011.

PMID: 39801720 PMC: 11708374. DOI: 10.1016/j.jmccpl.2022.100011.


Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors: Guardians against Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Heart Diseases.

Pham L, Mangmool S, Parichatikanond W ACS Pharmacol Transl Sci. 2024; 7(11):3279-3298.

PMID: 39539254 PMC: 11555527. DOI: 10.1021/acsptsci.4c00240.


Characterization of ferroptosis-triggered pyroptotic signaling in heart failure.

Bi X, Wu X, Chen J, Li X, Lin Y, Yu Y Signal Transduct Target Ther. 2024; 9(1):257.

PMID: 39327446 PMC: 11427671. DOI: 10.1038/s41392-024-01962-6.


Metabolite signaling in the heart.

Flam E, Arany Z Nat Cardiovasc Res. 2024; 2(6):504-516.

PMID: 39195876 DOI: 10.1038/s44161-023-00270-6.


Cardiac Molecular Analysis Reveals Aging-Associated Metabolic Alterations Promoting Glycosaminoglycans Accumulation via Hexosamine Biosynthetic Pathway.

Grilo L, Zimmerman K, Puppala S, Chan J, Huber H, Li G Adv Sci (Weinh). 2024; 11(38):e2309211.

PMID: 39119859 PMC: 11481188. DOI: 10.1002/advs.202309211.


References
1.
Brownlee M . Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865):813-20. DOI: 10.1038/414813a. View

2.
Hart G, Slawson C, Ramirez-Correa G, Lagerlof O . Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011; 80:825-58. PMC: 3294376. DOI: 10.1146/annurev-biochem-060608-102511. View

3.
Hanover J, Krause M, Love D . The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta. 2009; 1800(2):80-95. PMC: 2815088. DOI: 10.1016/j.bbagen.2009.07.017. View

4.
Bond M, Hanover J . O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr. 2013; 33:205-29. PMC: 10483992. DOI: 10.1146/annurev-nutr-071812-161240. View

5.
Slawson C, Hart G . O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer. 2011; 11(9):678-84. PMC: 3291174. DOI: 10.1038/nrc3114. View