» Articles » PMID: 32280468

Radiomics Based on Artificial Intelligence in Liver Diseases: Where We Are?

Overview
Specialty Gastroenterology
Date 2020 Apr 14
PMID 32280468
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Radiomics uses computers to extract a large amount of information from different types of images, form various quantifiable features, and select relevant features using artificial-intelligence algorithms to build models, in order to predict the outcomes of clinical problems (such as diagnosis, treatment, prognosis, etc.). The study of liver diseases by radiomics will contribute to early diagnosis and treatment of liver diseases and improve survival and cure rates of liver diseases. This field is currently in the ascendant and may have great development in the future. Therefore, we summarize the progress of current research in this article and then point out the related deficiencies and the direction of future research.

Citing Articles

Clinical Applications of Artificial Intelligence (AI) in Human Cancer: Is It Time to Update the Diagnostic and Predictive Models in Managing Hepatocellular Carcinoma (HCC)?.

Romeo M, Dallio M, Napolitano C, Basile C, Di Nardo F, Vaia P Diagnostics (Basel). 2025; 15(3).

PMID: 39941182 PMC: 11817573. DOI: 10.3390/diagnostics15030252.


The role of artificial intelligence and image processing in the diagnosis, treatment, and prognosis of liver cancer: a narrative-review.

Dimopoulos P, Mulita A, Antzoulas A, Bodard S, Leivaditis V, Akrida I Prz Gastroenterol. 2025; 19(3):221-230.

PMID: 39802971 PMC: 11718495. DOI: 10.5114/pg.2024.143147.


Machine learning model for non-alcoholic steatohepatitis diagnosis based on ultrasound radiomics.

Xia F, Wei W, Wang J, Duan Y, Wang K, Zhang C BMC Med Imaging. 2024; 24(1):221.

PMID: 39164667 PMC: 11334577. DOI: 10.1186/s12880-024-01398-y.


Comparing Texture Analysis of Apparent Diffusion Coefficient MRI in Hepatocellular Adenoma and Hepatocellular Carcinoma.

Abdullah A, Amanpour-Gharaei B, Toosi M, Delazar S, Saligheh Rad H, Arian A Cureus. 2024; 16(1):e51443.

PMID: 38298321 PMC: 10829059. DOI: 10.7759/cureus.51443.


Application and prospects of AI-based radiomics in ultrasound diagnosis.

Zhang H, Meng Z, Ru J, Meng Y, Wang K Vis Comput Ind Biomed Art. 2023; 6(1):20.

PMID: 37828411 PMC: 10570254. DOI: 10.1186/s42492-023-00147-2.


References
1.
Yoneda M, Imajo K, Nakajima A . Will the magnetic resonance imaging proton density fat fraction replace liver biopsy as the gold standard for detecting steatosis?. Hepatobiliary Surg Nutr. 2018; 7(4):292-293. PMC: 6131261. DOI: 10.21037/hbsn.2018.04.02. View

2.
Canellas R, Mehrkhani F, Patino M, Kambadakone A, Sahani D . Characterization of Portal Vein Thrombosis (Neoplastic Versus Bland) on CT Images Using Software-Based Texture Analysis and Thrombus Density (Hounsfield Units). AJR Am J Roentgenol. 2016; 207(5):W81-W87. DOI: 10.2214/AJR.15.15928. View

3.
Aherne E, Pak L, Goldman D, Gonen M, Jarnagin W, Simpson A . Intrahepatic cholangiocarcinoma: can imaging phenotypes predict survival and tumor genetics?. Abdom Radiol (NY). 2018; 43(10):2665-2672. PMC: 6113129. DOI: 10.1007/s00261-018-1505-4. View

4.
Margonis G, Buettner S, Andreatos N, Sasaki K, IJzermans J, van Vugt J . Anatomical Resections Improve Disease-free Survival in Patients With KRAS-mutated Colorectal Liver Metastases. Ann Surg. 2017; 266(4):641-649. DOI: 10.1097/SLA.0000000000002367. View

5.
Banerjee S, Wang D, Kim H, Sirlin C, Chan M, Korn R . A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology. 2015; 62(3):792-800. PMC: 4654334. DOI: 10.1002/hep.27877. View