» Articles » PMID: 32262008

Synthesis, Characterization and Applications of Calcium Carbonate/fructose 1,6-bisphosphate Composite Nanospheres and Carbonated Hydroxyapatite Porous Nanospheres

Overview
Journal J Mater Chem B
Date 2020 Apr 9
PMID 32262008
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we first investigated the effect of fructose 1,6-bisphosphate, which is fructose sugar phosphorylated on carbons 1 and 6, on the biomineralization of calcium carbonate, and prepared calcium carbonate/fructose 1,6-bisphosphate (CC/FBP) composite nanospheres. Then, we investigated the transformation of CC/FBP composite nanospheres under microwave-assisted hydrothermal conditions and prepared carbonated hydroxyapatite (CHA) porous nanospheres. We found that FBP has a unique effect on the morphology and crystallization of calcium carbonate. FBP can control the morphology of calcium carbonate and provide the phosphorus source for the formation of CHA. The morphology and size of CC/FBP composite nanospheres can be preserved after transformation to CHA porous nanospheres under microwave-assisted hydrothermal conditions. The CC/FBP composite nanospheres and CHA porous nanospheres are efficient for anticancer drug (docetaxel) loading and release, and the drug delivery system shows a high ability to damage tumor cells, and thus is promising for application in drug delivery. The as-prepared CC/FBP composite nanospheres and CHA porous nanospheres have excellent biocompatibility and high protein adsorption capacity, as well as high efficiency for gene transfection.