» Articles » PMID: 32259767

Nuclear Hubs Built on RNAs and Clustered Organization of the Genome

Overview
Publisher Elsevier
Specialty Cell Biology
Date 2020 Apr 8
PMID 32259767
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

RNAs play diverse roles in formation and function of subnuclear compartments, most of which are associated with active genes. NEAT1 and NEAT2/MALAT1 exemplify long non-coding RNAs (lncRNAs) known to function in nuclear bodies; however, we suggest that RNA biogenesis itself may underpin much nuclear compartmentalization. Recent studies show that active genes cluster with nuclear speckles on a genome-wide scale, significantly advancing earlier cytological evidence that speckles (aka SC-35 domains) are hubs of concentrated pre-mRNA metabolism. We propose the 'karyotype to hub' hypothesis to explain this organization: clustering of genes in the human karyotype may have evolved to facilitate the formation of efficient nuclear hubs, driven in part by the propensity of ribonucleoproteins (RNPs) to form large-scale condensates. The special capacity of highly repetitive RNAs to impact architecture is highlighted by recent findings that human satellite II RNA sequesters factors into abnormal nuclear bodies in disease, potentially co-opting a normal developmental mechanism.

Citing Articles

NEAT1-mediated regulation of proteostasis and mRNA localization impacts autophagy dysregulation in Rett syndrome.

Siqueira E, Velasco C, Tarrason A, Soler M, Srinivas T, Setien F Nucleic Acids Res. 2025; 53(4).

PMID: 39921568 PMC: 11806351. DOI: 10.1093/nar/gkaf074.


Basic Epigenetic Mechanisms.

Davie J, Sattarifard H, Sudhakar S, Roberts C, Beacon T, Muker I Subcell Biochem. 2025; 108():1-49.

PMID: 39820859 DOI: 10.1007/978-3-031-75980-2_1.


Nascent transcript O-MAP reveals the molecular architecture of a single-locus subnuclear compartment built by RBM20 and the RNA.

Kania E, Fenix A, Marciniak D, Lin Q, Bianchi S, Hristov B bioRxiv. 2024; .

PMID: 39574693 PMC: 11580901. DOI: 10.1101/2024.11.05.622011.


Cytogenetic bands and sharp peaks of Alu underlie large-scale segmental regulation of nuclear genome architecture.

Hall L, Creamer K, Byron M, Lawrence J Nucleus. 2024; 15(1):2400525.

PMID: 39377317 PMC: 11469423. DOI: 10.1080/19491034.2024.2400525.


Nuclear RNA: a transcription-dependent regulator of chromatin structure.

Stocks J, Gilbert N Biochem Soc Trans. 2024; 52(4):1605-1615.

PMID: 39082979 PMC: 11668306. DOI: 10.1042/BST20230787.


References
1.
Berry J, Weber S, Vaidya N, Haataja M, Brangwynne C . RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A. 2015; 112(38):E5237-45. PMC: 4586886. DOI: 10.1073/pnas.1509317112. View

2.
Li X, Fu X . Chromatin-associated RNAs as facilitators of functional genomic interactions. Nat Rev Genet. 2019; 20(9):503-519. PMC: 7684979. DOI: 10.1038/s41576-019-0135-1. View

3.
Spector D, Lamond A . Nuclear speckles. Cold Spring Harb Perspect Biol. 2010; 3(2). PMC: 3039535. DOI: 10.1101/cshperspect.a000646. View

4.
Hu Y, Plutz M, Belmont A . Hsp70 gene association with nuclear speckles is Hsp70 promoter specific. J Cell Biol. 2010; 191(4):711-9. PMC: 2983068. DOI: 10.1083/jcb.201004041. View

5.
Solovyov A, Vabret N, Arora K, Snyder A, Funt S, Bajorin D . Global Cancer Transcriptome Quantifies Repeat Element Polarization between Immunotherapy Responsive and T Cell Suppressive Classes. Cell Rep. 2018; 23(2):512-521. PMC: 6016853. DOI: 10.1016/j.celrep.2018.03.042. View