» Articles » PMID: 32257049

Mapping and Editing of Nucleic Acid Modifications

Overview
Specialty Biotechnology
Date 2020 Apr 8
PMID 32257049
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Modification on nucleic acid plays a pivotal role in controlling gene expression. Various kinds of modifications greatly increase the information-encoding capacity of DNA and RNA by introducing extra chemical group to existing bases instead of altering the genetic sequences. As a marker on DNA or RNA, nucleic acid modification can be recognized by specific proteins, leading to versatile regulation of gene expression. However, modified and regular bases are often indistinguishable by most conventional molecular methods, impeding detailed functional studies that require the information of genomic location. Recently, new technologies are emerging to resolve the positions of varied modifications on both DNA and RNA. Intriguingly, by integrating regional targeting tools and effector proteins, researchers begin to actively control the modification status of desired gene in vivo. In this review, we summarize the characteristics of DNA and RNA modifications, the available mapping and editing tools, and the potential application as well as deficiency of these technologies in basic and translational researches.

Citing Articles

Deciphering the dynamic code: DNA recognition by transcription factors in the ever-changing genome.

Yao Y, Miodownik I, OHagan M, Jbara M, Afek A Transcription. 2024; 15(3-5):114-138.

PMID: 39033307 PMC: 11810102. DOI: 10.1080/21541264.2024.2379161.


Epigenetic regulation of megakaryopoiesis and platelet formation.

Xu B, Ye X, Wen Z, Chen S, Wang J Haematologica. 2024; 109(10):3125-3137.

PMID: 38867584 PMC: 11443398. DOI: 10.3324/haematol.2023.284951.


Nutrient inputs and social metabolic control of T cell fate.

Bacigalupa Z, Landis M, Rathmell J Cell Metab. 2023; 36(1):10-20.

PMID: 38118440 PMC: 10872404. DOI: 10.1016/j.cmet.2023.12.009.


Deciphering m6A dynamics at a single-base level during planarian anterior-posterior axis specification.

Chen L, Zhen H, Chen Z, Huang M, Mak D, Jin W Comput Struct Biotechnol J. 2023; 21:4567-4579.

PMID: 37790241 PMC: 10542940. DOI: 10.1016/j.csbj.2023.09.018.


The omics era: a nexus of untapped potential for Mendelian chromatinopathies.

Nava A, Arboleda V Hum Genet. 2023; 143(4):475-495.

PMID: 37115317 PMC: 11078811. DOI: 10.1007/s00439-023-02560-2.


References
1.
Wei J, He C . Site-specific mA editing. Nat Chem Biol. 2019; 15(9):848-849. DOI: 10.1038/s41589-019-0349-8. View

2.
Chen K, Zhao B, He C . Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem Biol. 2016; 23(1):74-85. PMC: 4779186. DOI: 10.1016/j.chembiol.2015.11.007. View

3.
Kumar S, Chinnusamy V, Mohapatra T . Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front Genet. 2019; 9:640. PMC: 6305559. DOI: 10.3389/fgene.2018.00640. View

4.
Fu Y, Foden J, Khayter C, Maeder M, Reyon D, Joung J . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. 2013; 31(9):822-6. PMC: 3773023. DOI: 10.1038/nbt.2623. View

5.
Roy Choudhury S, Cui Y, Lubecka K, Stefanska B, Irudayaraj J . CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. 2016; 7(29):46545-46556. PMC: 5216816. DOI: 10.18632/oncotarget.10234. View