» Articles » PMID: 32245105

Synthesis, Characterization, and Optimization of Magnetoelectric BaTiO-Iron Oxide Core-Shell Nanoparticles

Overview
Date 2020 Apr 5
PMID 32245105
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Improvement of magnetic, electronic, optical, and catalytic properties in cutting-edge technologies including drug delivery, energy storage, magnetic transistor, and spintronics requires novel nanomaterials. This article discusses the unique, clean, and homogeneous physiochemical synthesis of BaTiO/iron oxide core-shell nanoparticles with interfaces between ferroelectric and ferromagnetic materials. High-resolution transmission electron microscopy displayed the distinguished disparity between the core and shell of the synthesized nanoparticles. Elemental mapping and line scan confirmed the formation of the core-shell structure. Energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy detected the surface iron oxide phase as maghemite. Rietveld analysis of the X-ray diffraction data labeled the crystallinity and phase purity. This study provides a promising platform for the desirable property development of the futuristic multifunctional nanodevices.

Citing Articles

Modeling of core-shell magneto-electric nanoparticles for biomedical applications: Effect of composition, dimension, and magnetic field features on magnetoelectric response.

Fiocchi S, Chiaramello E, Marrella A, Suarato G, Bonato M, Parazzini M PLoS One. 2022; 17(9):e0274676.

PMID: 36149898 PMC: 9506614. DOI: 10.1371/journal.pone.0274676.


In silico assessment of electrophysiological neuronal recordings mediated by magnetoelectric nanoparticles.

Bok I, Haber I, Qu X, Hai A Sci Rep. 2022; 12(1):8386.

PMID: 35589877 PMC: 9120189. DOI: 10.1038/s41598-022-12303-4.


Giant magnetoelectric coupling observed at high frequency in NiFeO-BaTiO particulate composite.

Shi Z, Zhang J, Gao D, Zhu Z, Yang Z, Zhang Z RSC Adv. 2022; 10(45):27242-27248.

PMID: 35515802 PMC: 9055467. DOI: 10.1039/d0ra05782g.


Photocatalytic Degradation of Sulfamethoxazole, Nitenpyram and Tetracycline by Composites of Core Shell g-CN@ZnO, and ZnO Defects in Aqueous Phase.

Teye G, Huang J, Li Y, Li K, Chen L, Darkwah W Nanomaterials (Basel). 2021; 11(10).

PMID: 34685050 PMC: 8540673. DOI: 10.3390/nano11102609.


Strengthening Effect of Nb on Ferrite Grain Boundary in X70 Pipeline Steel.

Li Z, Li Z, Tian W Materials (Basel). 2020; 14(1).

PMID: 33375580 PMC: 7796326. DOI: 10.3390/ma14010061.

References
1.
Kumar C, Poornachandra Y, Chandrasekhar C . Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale. 2015; 7(44):18738-50. DOI: 10.1039/c5nr04577k. View

2.
Kukhar V, Pertsev N, Kholkin A . Thermodynamic theory of strain-mediated direct magnetoelectric effect in multiferroic film-substrate hybrids. Nanotechnology. 2010; 21(26):265701. DOI: 10.1088/0957-4484/21/26/265701. View

3.
Akbarzadeh A, Samiei M, Davaran S . Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012; 7(1):144. PMC: 3312841. DOI: 10.1186/1556-276X-7-144. View

4.
Birkner N, Navrotsky A . Thermodynamics of manganese oxides: Sodium, potassium, and calcium birnessite and cryptomelane. Proc Natl Acad Sci U S A. 2017; 114(7):E1046-E1053. PMC: 5320975. DOI: 10.1073/pnas.1620427114. View

5.
Lopez Anton R, Gonzalez J, Andres J, Canales-Vazquez J, De Toro J, Riveiro J . High-vacuum annealing reduction of Co/CoO nanoparticles. Nanotechnology. 2014; 25(10):105702. DOI: 10.1088/0957-4484/25/10/105702. View