» Articles » PMID: 32244411

"notame": Workflow for Non-Targeted LC-MS Metabolic Profiling

Abstract

Metabolomics analysis generates vast arrays of data, necessitating comprehensive workflows involving expertise in analytics, biochemistry and bioinformatics in order to provide coherent and high-quality data that enable discovery of robust and biologically significant metabolic findings. In this protocol article, we introduce notame, an analytical workflow for non-targeted metabolic profiling approaches, utilizing liquid chromatography-mass spectrometry analysis. We provide an overview of lab protocols and statistical methods that we commonly practice for the analysis of nutritional metabolomics data. The paper is divided into three main sections: the first and second sections introducing the background and the study designs available for metabolomics research and the third section describing in detail the steps of the main methods and protocols used to produce, preprocess and statistically analyze metabolomics data and, finally, to identify and interpret the compounds that have emerged as interesting.

Citing Articles

MicrobiomeStatPlots: Microbiome statistics plotting gallery for meta-omics and bioinformatics.

Bai D, Ma C, Xun J, Luo H, Yang H, Lyu H Imeta. 2025; 4(1):e70002.

PMID: 40027478 PMC: 11865346. DOI: 10.1002/imt2.70002.


Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Toivonen E, Sikkinen J, Salonen A, Karkkainen O, Koistinen V, Klavus A Metabolomics. 2025; 21(1):21.

PMID: 39863780 PMC: 11762436. DOI: 10.1007/s11306-025-02224-4.


Pulsed Electric Field Induces Significant Changes in the Metabolome of Species and Decreases Their Viability and Toxigenicity.

Behner A, Palicova J, Tobolkova A, Prusova N, Stranska M Toxins (Basel). 2025; 17(1.

PMID: 39852986 PMC: 11769547. DOI: 10.3390/toxins17010033.


BiomiX, a user-friendly bioinformatic tool for democratized analysis and integration of multiomics data.

Iperi C, Fernandez-Ochoa A, Barturen G, Pers J, Foulquier N, Bettacchioli E BMC Bioinformatics. 2025; 26(1):8.

PMID: 39794699 PMC: 11721463. DOI: 10.1186/s12859-024-06022-y.


Blood metabolomic profiling reveals new targets in the management of psychological symptoms associated with severe alcohol use disorder.

Leclercq S, Ahmed H, Amadieu C, Petit G, Koistinen V, Leyrolle Q Elife. 2024; 13.

PMID: 39611656 PMC: 11606602. DOI: 10.7554/eLife.96937.


References
1.
Broadhurst D, Goodacre R, Reinke S, Kuligowski J, Wilson I, Lewis M . Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics. 2018; 14(6):72. PMC: 5960010. DOI: 10.1007/s11306-018-1367-3. View

2.
Johnson C, Ivanisevic J, Siuzdak G . Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016; 17(7):451-9. PMC: 5729912. DOI: 10.1038/nrm.2016.25. View

3.
Kouril S, de Sousa J, Vaclavik J, Friedecky D, Adam T . CROP: correlation-based reduction of feature multiplicities in untargeted metabolomic data. Bioinformatics. 2020; 36(9):2941-2942. DOI: 10.1093/bioinformatics/btaa012. View

4.
Koistinen V, Hanhineva K . Microbial and endogenous metabolic conversions of rye phytochemicals. Mol Nutr Food Res. 2016; 61(7). DOI: 10.1002/mnfr.201600627. View

5.
Kirwan J, Broadhurst D, Davidson R, Viant M . Characterising and correcting batch variation in an automated direct infusion mass spectrometry (DIMS) metabolomics workflow. Anal Bioanal Chem. 2013; 405(15):5147-57. DOI: 10.1007/s00216-013-6856-7. View