Microcoulometric Analysis of Trimethylamine Dehydrogenase
Overview
Authors
Affiliations
Trimethylamine dehydrogenase, which contains one covalently bound 6-S-cysteinyl-FMN and one Fe4S4 cluster per subunit of molecular mass 83,000 Da, was purified to homogeneity from the methylotrophic bacterium W3A1. Microcoulometry at pH 7 in 50 mM-Mops buffer containing 0.1 mM-EDTA and 0.1 M-KCl revealed that the native enzyme required the addition of 3 reducing equivalents per subunit for complete reduction. In contrast, under identical conditions the phenylhydrazine-inhibited enzyme required the addition of 0.9 reducing equivalent per subunit with a midpoint potential of +110 mV. Least-squares analysis of the microcoulometric data obtained for the native enzyme, assuming uptake of 1 electron by Fe4S4 and 2 electrons by FMN, indicated midpoint potentials of +44 mV and +36 mV for the FMN/FMN.- and FMN.-/FMNH2 couples respectively and +102 mV for reduction of the Fe4S4 cluster.
Structural and kinetic analyses of the H121A mutant of cholesterol oxidase.
Lim L, Molla G, Guinn N, Ghisla S, Pollegioni L, Vrielink A Biochem J. 2006; 400(1):13-22.
PMID: 16856877 PMC: 1635447. DOI: 10.1042/BJ20060664.
Lennon B, Williams Jr C, Ludwig M Protein Sci. 1999; 8(11):2366-79.
PMID: 10595539 PMC: 2144213. DOI: 10.1110/ps.8.11.2366.