» Articles » PMID: 32239126

EVICAN-a Balanced Dataset for Algorithm Development in Cell and Nucleus Segmentation

Overview
Journal Bioinformatics
Specialty Biology
Date 2020 Apr 3
PMID 32239126
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: Deep learning use for quantitative image analysis is exponentially increasing. However, training accurate, widely deployable deep learning algorithms requires a plethora of annotated (ground truth) data. Image collections must contain not only thousands of images to provide sufficient example objects (i.e. cells), but also contain an adequate degree of image heterogeneity.

Results: We present a new dataset, EVICAN-Expert visual cell annotation, comprising partially annotated grayscale images of 30 different cell lines from multiple microscopes, contrast mechanisms and magnifications that is readily usable as training data for computer vision applications. With 4600 images and ∼26 000 segmented cells, our collection offers an unparalleled heterogeneous training dataset for cell biology deep learning application development.

Availability And Implementation: The dataset is freely available (https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI?q=). Using a Mask R-CNN implementation, we demonstrate automated segmentation of cells and nuclei from brightfield images with a mean average precision of 61.6 % at a Jaccard Index above 0.5.

Citing Articles

Comparative Study of Deep Transfer Learning Models for Semantic Segmentation of Human Mesenchymal Stem Cell Micrographs.

Solopov M, Chechekhina E, Kavelina A, Akopian G, Turchin V, Popandopulo A Int J Mol Sci. 2025; 26(5).

PMID: 40076956 PMC: 11899854. DOI: 10.3390/ijms26052338.


Cell-APP: A generalizable method for microscopic cell annotation, segmentation, and classification.

Virdi A, Joglekar A bioRxiv. 2025; .

PMID: 39896521 PMC: 11785174. DOI: 10.1101/2025.01.23.634498.


CMTT-JTracker: a fully test-time adaptive framework serving automated cell lineage construction.

Chen L, Fu S, Zhang Z Brief Bioinform. 2024; 25(6).

PMID: 39552066 PMC: 11570544. DOI: 10.1093/bib/bbae591.


Instance segmentation of cells and nuclei from multi-organ cross-protocol microscopic images.

Baral S, Paing M Quant Imaging Med Surg. 2024; 14(9):6204-6221.

PMID: 39281162 PMC: 11400680. DOI: 10.21037/qims-24-801.


Automated segmentation and recognition of C. elegans whole-body cells.

Li Y, Lai C, Wang M, Wu J, Li Y, Peng H Bioinformatics. 2024; 40(5).

PMID: 38775410 PMC: 11139520. DOI: 10.1093/bioinformatics/btae324.


References
1.
Ren S, He K, Girshick R, Sun J . Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans Pattern Anal Mach Intell. 2016; 39(6):1137-1149. DOI: 10.1109/TPAMI.2016.2577031. View

2.
Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H . Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017; 542(7639):115-118. PMC: 8382232. DOI: 10.1038/nature21056. View

3.
Caicedo J, Roth J, Goodman A, Becker T, Karhohs K, Broisin M . Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images. Cytometry A. 2019; 95(9):952-965. PMC: 6771982. DOI: 10.1002/cyto.a.23863. View

4.
Wahlby C, Lindblad J, Vondrus M, Bengtsson E, Bjorkesten L . Algorithms for cytoplasm segmentation of fluorescence labelled cells. Anal Cell Pathol. 2002; 24(2-3):101-11. PMC: 4618826. DOI: 10.1155/2002/821782. View

5.
Wiedenmann J, Oswald F, Nienhaus G . Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life. 2009; 61(11):1029-42. DOI: 10.1002/iub.256. View