Wakamatsu T, Mizobuchi S, Mori F, Futagami T, Terada T, Morono Y
Front Microbiol. 2022; 12:726024.
PMID: 35095779
PMC: 8793675.
DOI: 10.3389/fmicb.2021.726024.
King G
Front Microbiol. 2019; 9:3066.
PMID: 30631312
PMC: 6315191.
DOI: 10.3389/fmicb.2018.03066.
Coutinho M, Teixeira V, Santos C
J Chem Ecol. 2017; 44(1):72-94.
PMID: 29273953
DOI: 10.1007/s10886-017-0915-z.
Futagami T, Morono Y, Terada T, Kaksonen A, Inagaki F
Philos Trans R Soc Lond B Biol Sci. 2013; 368(1616):20120249.
PMID: 23479745
PMC: 3638456.
DOI: 10.1098/rstb.2012.0249.
Lever M
Front Microbiol. 2012; 2:284.
PMID: 22347874
PMC: 3276360.
DOI: 10.3389/fmicb.2011.00284.
Dehalogenation activities and distribution of reductive dehalogenase homologous genes in marine subsurface sediments.
Futagami T, Morono Y, Terada T, Kaksonen A, Inagaki F
Appl Environ Microbiol. 2009; 75(21):6905-9.
PMID: 19749069
PMC: 2772448.
DOI: 10.1128/AEM.01124-09.
Microbial reductive dechlorination of aroclor 1260 in anaerobic slurries of estuarine sediments.
Wu Q, Sowers K, May H
Appl Environ Microbiol. 2005; 64(3):1052-8.
PMID: 16349512
PMC: 106366.
DOI: 10.1128/AEM.64.3.1052-1058.1998.
Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture.
Madsen T, Aamand J
Appl Environ Microbiol. 1991; 57(9):2453-8.
PMID: 16348548
PMC: 183602.
DOI: 10.1128/aem.57.9.2453-2458.1991.
Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries.
Kuhn E, Townsend G, Suflita J
Appl Environ Microbiol. 1990; 56(9):2630-7.
PMID: 16348273
PMC: 184813.
DOI: 10.1128/aem.56.9.2630-2637.1990.
Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic Acid in samples from a methanogenic aquifer: stimulation by short-chain organic acids and alcohols.
Gibson S, Suflita J
Appl Environ Microbiol. 1990; 56(6):1825-32.
PMID: 16348223
PMC: 184517.
DOI: 10.1128/aem.56.6.1825-1832.1990.
Efficacy of phospholipid analysis in determining microbial biomass in sediments.
Findlay R, King G, Watling L
Appl Environ Microbiol. 1989; 55(11):2888-93.
PMID: 16348051
PMC: 203186.
DOI: 10.1128/aem.55.11.2888-2893.1989.
Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by basidiomycete fungi.
Milliken C, Meier G, Watts J, Sowers K, May H
Appl Environ Microbiol. 2004; 70(1):385-92.
PMID: 14711667
PMC: 321268.
DOI: 10.1128/AEM.70.1.385-392.2004.
Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba.
Ahn Y, Rhee S, Fennell D, Kerkhof L, Hentschel U, Haggblom M
Appl Environ Microbiol. 2003; 69(7):4159-66.
PMID: 12839794
PMC: 165205.
DOI: 10.1128/AEM.69.7.4159-4166.2003.
Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov.
Chung W, King G
Appl Environ Microbiol. 2001; 67(12):5585-92.
PMID: 11722910
PMC: 93347.
DOI: 10.1128/AEM.67.12.5585-5592.2001.
Isolation and characterization of Desulfovibrio dechloracetivorans sp. nov., a marine dechlorinating bacterium growing by coupling the oxidation of acetate to the reductive dechlorination of 2-chlorophenol.
Sun B, Cole J, Sanford R, Tiedje J
Appl Environ Microbiol. 2000; 66(6):2408-13.
PMID: 10831418
PMC: 110546.
DOI: 10.1128/AEM.66.6.2408-2413.2000.
Ferric iron reduction by bacteria associated with the roots of freshwater and marine macrophytes.
King G, Garey M
Appl Environ Microbiol. 1999; 65(10):4393-8.
PMID: 10508065
PMC: 91583.
DOI: 10.1128/AEM.65.10.4393-4398.1999.
Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2,4, 6-tribromophenol.
Boyle A, Phelps C, Young L
Appl Environ Microbiol. 1999; 65(3):1133-40.
PMID: 10049873
PMC: 91154.
DOI: 10.1128/AEM.65.3.1133-1140.1999.
Biotransformation of the major fungal metabolite 3,5-dichloro- p-anisyl alcohol under anaerobic conditions and its role in formation of Bis(3,5-dichloro-4-Hydroxyphenyl)methane.
Verhagen F, Swarts H, Wijnberg J, Field J
Appl Environ Microbiol. 1998; 64(9):3225-31.
PMID: 9726864
PMC: 106714.
DOI: 10.1128/AEM.64.9.3225-3231.1998.
Dehalogenation and biodegradation of brominated phenols and benzoic acids under iron-reducing, sulfidogenic, and methanogenic conditions.
Monserrate E, Haggblom M
Appl Environ Microbiol. 1998; 63(10):3911-5.
PMID: 9480645
PMC: 168701.
DOI: 10.1128/aem.63.10.3911-3915.1997.
Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids.
Haggblom M, Rivera M, Young L
Appl Environ Microbiol. 1993; 59(4):1162-7.
PMID: 8476290
PMC: 202255.
DOI: 10.1128/aem.59.4.1162-1167.1993.