» Articles » PMID: 32235483

Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides Using Convolutional Neural Networks

Overview
Journal Sensors (Basel)
Publisher MDPI
Specialty Biotechnology
Date 2020 Apr 3
PMID 32235483
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HSI microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20× magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.

Citing Articles

Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review.

Lai C, Karmakar R, Mukundan A, Natarajan R, Lu S, Wang C APL Bioeng. 2024; 8(4):041504.

PMID: 39660034 PMC: 11629177. DOI: 10.1063/5.0240444.


Evolution of Molecular Biomarkers and Precision Molecular Therapeutic Strategies in Glioblastoma.

Jacome M, Wu Q, Pina Y, Etame A Cancers (Basel). 2024; 16(21).

PMID: 39518074 PMC: 11544870. DOI: 10.3390/cancers16213635.


Technological Frontiers in Brain Cancer: A Systematic Review and Meta-Analysis of Hyperspectral Imaging in Computer-Aided Diagnosis Systems.

Leung J, Karmakar R, Mukundan A, Lin W, Anwar F, Wang H Diagnostics (Basel). 2024; 14(17).

PMID: 39272675 PMC: 11394276. DOI: 10.3390/diagnostics14171888.


Sexually dimorphic computational histopathological signatures prognostic of overall survival in high-grade gliomas via deep learning.

Verma R, Alban T, Parthasarathy P, Mokhtari M, Toro Castano P, Cohen M Sci Adv. 2024; 10(34):eadi0302.

PMID: 39178259 PMC: 11343024. DOI: 10.1126/sciadv.adi0302.


Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks.

Cruz-Guerrero I, Campos-Delgado D, Mejia-Rodriguez A, Leon R, Ortega S, Fabelo H Healthc Technol Lett. 2024; 11(4):240-251.

PMID: 39100499 PMC: 11294933. DOI: 10.1049/htl2.12084.


References
1.
Ortega S, Fabelo H, Camacho R, Plaza M, Callico G, Sarmiento R . Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed Opt Express. 2018; 9(2):818-831. PMC: 5854081. DOI: 10.1364/BOE.9.000818. View

2.
Awan R, Al-Maadeed S, Al-Saady R . Using spectral imaging for the analysis of abnormalities for colorectal cancer: When is it helpful?. PLoS One. 2018; 13(6):e0197431. PMC: 5991384. DOI: 10.1371/journal.pone.0197431. View

3.
Madabhushi A, Lee G . Image analysis and machine learning in digital pathology: Challenges and opportunities. Med Image Anal. 2016; 33:170-175. PMC: 5556681. DOI: 10.1016/j.media.2016.06.037. View

4.
Flotte T, Bell D . Anatomical pathology is at a crossroads. Pathology. 2018; 50(4):373-374. DOI: 10.1016/j.pathol.2018.01.003. View

5.
Haj-Hassan H, Chaddad A, Harkouss Y, Desrosiers C, Toews M, Tanougast C . Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network. J Pathol Inform. 2017; 8:1. PMC: 5360018. DOI: 10.4103/jpi.jpi_47_16. View