» Articles » PMID: 32221301

Tunable Macroscale Structural Superlubricity in Two-layer Graphene Via Strain Engineering

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Mar 30
PMID 32221301
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Achieving structural superlubricity in graphitic samples of macroscale size is particularly challenging due to difficulties in sliding large contact areas of commensurate stacking domains. Here, we show the presence of macroscale structural superlubricity between two randomly stacked graphene layers produced by both mechanical exfoliation and chemical vapour deposition. By measuring the shifts of Raman peaks under strain we estimate the values of frictional interlayer shear stress (ILSS) in the superlubricity regime (mm scale) under ambient conditions. The random incommensurate stacking, the presence of wrinkles and the mismatch in the lattice constant between two graphene layers induced by the tensile strain differential are considered responsible for the facile shearing at the macroscale. Furthermore, molecular dynamic simulations show that the stick-slip behaviour does not hold for incommensurate chiral shearing directions for which the ILSS decreases substantially, supporting the experimental observations. Our results pave the way for overcoming several limitations in achieving macroscale superlubricity using graphene.

Citing Articles

Evidence of Directional Structural Superlubricity and Lévy Flights in a van der Waals Heterostructure.

Le Ster M, Krukowski P, Rogala M, Dabrowski P, Lutsyk I, Toczek K Small. 2024; 21(6):e2408349.

PMID: 39600083 PMC: 11817913. DOI: 10.1002/smll.202408349.


Macroscale, humidity-insensitive, and stable structural superlubricity achieved with hydrogen-free graphene nanoflakes.

Li R, Yang X, Li J, Wang Y, Ma M Nat Commun. 2024; 15(1):9197.

PMID: 39448581 PMC: 11502714. DOI: 10.1038/s41467-024-53462-4.


Superlubric Graphullerene.

Ying P, Hod O, Urbakh M Nano Lett. 2024; 24(34):10599-10604.

PMID: 39158098 PMC: 11363119. DOI: 10.1021/acs.nanolett.4c02794.


Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields.

Yu C, Cao J, Zhu S, Dai Z Materials (Basel). 2024; 17(12).

PMID: 38930258 PMC: 11204662. DOI: 10.3390/ma17122889.


Macroscale Superlubricity on Nanoscale Graphene Moiré Structure-Assembled Surface via Counterface Hydrogen Modulation.

Wang Y, Yang X, Liang H, Zhao J, Zhang J Adv Sci (Weinh). 2024; 11(19):e2309701.

PMID: 38483889 PMC: 11109616. DOI: 10.1002/advs.202309701.


References
1.
Galiotis C, Frank O, Koukaras E, Sfyris D . Graphene Mechanics: Current Status and Perspectives. Annu Rev Chem Biomol Eng. 2015; 6:121-40. DOI: 10.1146/annurev-chembioeng-061114-123216. View

2.
Lee C, Li Q, Kalb W, Liu X, Berger H, Carpick R . Frictional characteristics of atomically thin sheets. Science. 2010; 328(5974):76-80. DOI: 10.1126/science.1184167. View

3.
Dou W, Xu C, Guo J, Du H, Qiu W, Xue T . Interfacial Mechanical Properties of Double-Layer Graphene with Consideration of the Effect of Stacking Mode. ACS Appl Mater Interfaces. 2018; 10(51):44941-44949. DOI: 10.1021/acsami.8b18982. View

4.
Song Y, Mandelli D, Hod O, Urbakh M, Ma M, Zheng Q . Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat Mater. 2018; 17(10):894-899. DOI: 10.1038/s41563-018-0144-z. View

5.
Sasaki , Kobayashi , Tsukada . Atomic-scale friction image of graphite in atomic-force microscopy. Phys Rev B Condens Matter. 1996; 54(3):2138-2149. DOI: 10.1103/physrevb.54.2138. View