» Articles » PMID: 322143

High-resolution Proton Magnetic Resonance Study of the Secondary Structure of the 3'-terminal 49-nucleotide Fragment of 16S RRNA from Escherichia Coli

Overview
Specialty Science
Date 1977 Mar 1
PMID 322143
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

The 3' terminus of 16S rRNA has been implicated in the recognition of mRNA's by the ribosome. A fragment containing the 3'-terminal 49 nucleotides cleaved from the rRNA by cloacin DF13 was isolated in a pure form. The secondary structure of this fragment has been studied by measuring the high-resolution proton magnetic resonance spectra. The resonances observed at low field can be assigned to hydrogen-bonded iminoprotons of base-pairs present in the fragment. From the data we conclude that the rRNA fragment, under the conditions used, exists as a hairpin consisting of eight intramolecular base-pairs, the 3'-terminal dodecanucleotide being unpaired. The implications of these findings with respect to the function of the ribosomal protein S1 are discussed.

Citing Articles

Structural analysis of kasugamycin inhibition of translation.

Schuwirth B, Day J, Hau C, Janssen G, Dahlberg A, Cate J Nat Struct Mol Biol. 2006; 13(10):879-86.

PMID: 16998486 PMC: 2636691. DOI: 10.1038/nsmb1150.


The 3'-terminal primary structure of five eukaryotic 18S rRNAs determined by the direct chemical method of sequencing. The highly conserved sequences include an invariant region complementary to eukaryotic 5S rRNA.

Azad A, Deacon N Nucleic Acids Res. 1980; 8(19):4365-76.

PMID: 7433112 PMC: 324245. DOI: 10.1093/nar/8.19.4365.


Sequence and secondary structure of the colicin fragment of Bacillus stearothermophilus 16S ribosomal RNA.

Van Charldorp R, Van Kimmenade A, Van Knippenberg P Nucleic Acids Res. 1981; 9(19):4909-17.

PMID: 7312621 PMC: 327488. DOI: 10.1093/nar/9.19.4909.


Destabilization of secondary structure in 16S ribosomal RNA by dimethylation of two adjacent adenosines.

Van Charldorp R, Heus H, Van Knippenberg P, Joordens J, De Bruin S, Hilbers C Nucleic Acids Res. 1981; 9(17):4413-22.

PMID: 7029465 PMC: 327444. DOI: 10.1093/nar/9.17.4413.


Mechanism of the interaction between ribosomal protein S1 and oligonucleotides.

Mulsch A, Colpan M, Wollny E, GASSEN H, Riesner D Nucleic Acids Res. 1981; 9(10):2367-85.

PMID: 7019854 PMC: 326851. DOI: 10.1093/nar/9.10.2367.


References
1.
Baan R, Van Charldorp R, van Leerdam E, Van Knippenberg P, Bosch L, de Rooij J . The 3'-terminus of 16 S ribosomal RNA of Escherichia coli. Isolation and purification of the terminal 49-nucleotide fragment at a milligram scale. FEBS Lett. 1976; 71(2):351-5. DOI: 10.1016/0014-5793(76)80968-4. View

2.
Crothers D, Hilbers C, Shulman R . Nuclear magnetic resonance study of hydrogen-bonded ring protons in Watson-Crick base pairs. Proc Natl Acad Sci U S A. 1973; 70(10):2899-901. PMC: 427134. DOI: 10.1073/pnas.70.10.2899. View

3.
Shulman R, Hilbers C . Ring-current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. J Mol Biol. 1973; 78(1):57-69. DOI: 10.1016/0022-2836(73)90428-2. View

4.
Kearns D, Wong Y . Investigation of the secondary structure of Escherichia coli 5 S RNA by high-resolution nuclear magnetic resonance. J Mol Biol. 1974; 87(4):755-74. DOI: 10.1016/0022-2836(74)90083-7. View

5.
Patel D, Hilbers C . Proton nuclear magnetic resonance investigations of fraying in double-stranded d-ApTpGpCpApT in H2O solution. Biochemistry. 1975; 14(12):2651-6. DOI: 10.1021/bi00683a014. View