» Articles » PMID: 32206704

Direct Observation of Topological Edge States in Silicon Photonic Crystals: Spin, Dispersion, and Chiral Routing

Overview
Journal Sci Adv
Specialties Biology
Science
Date 2020 Mar 25
PMID 32206704
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Topological protection in photonics offers new prospects for guiding and manipulating classical and quantum information. The mechanism of spin-orbit coupling promises the emergence of edge states that are helical, exhibiting unidirectional propagation that is topologically protected against back scattering. We directly observe the topological states of a photonic analog of electronic materials exhibiting the quantum spin Hall effect, living at the interface between two silicon photonic crystals with different topological order. Through the far-field radiation that is inherent to the states' existence, we characterize their properties, including linear dispersion and low loss. We find that the edge state pseudospin is encoded in unique circular far-field polarization and linked to unidirectional propagation, thus revealing a signature of the underlying photonic spin-orbit coupling. We use this connection to selectively excite different edge states with polarized light and directly visualize their routing along sharp chiral waveguide junctions.

Citing Articles

An operator-based approach to topological photonics.

Cerjan A, Loring T Nanophotonics. 2024; 11(21):4765-4780.

PMID: 39634734 PMC: 11501349. DOI: 10.1515/nanoph-2022-0547.


Fourier imaging for nanophotonics.

Cueff S, Berguiga L, Nguyen H Nanophotonics. 2024; 13(6):841-858.

PMID: 39634374 PMC: 11501959. DOI: 10.1515/nanoph-2023-0887.


Realization of Z Topological Photonic Insulators Made from Multilayer Transition Metal Dichalcogenides.

Isoniemi T, Bouteyre P, Hu X, Benimetskiy F, Wang Y, Skolnick M ACS Nano. 2024; 18(47):32547-32555.

PMID: 39552053 PMC: 11603781. DOI: 10.1021/acsnano.4c09295.


Local control of polarization and geometric phase in thermal metasurfaces.

Nolen J, Overvig A, Cotrufo M, Alu A Nat Nanotechnol. 2024; 19(11):1627-1634.

PMID: 39179797 DOI: 10.1038/s41565-024-01763-6.


Photonic topological phase transition induced by material phase transition.

Uemura T, Moritake Y, Yoda T, Chiba H, Tanaka Y, Ono M Sci Adv. 2024; 10(34):eadp7779.

PMID: 39178256 PMC: 11343022. DOI: 10.1126/sciadv.adp7779.


References
1.
Bandres M, Wittek S, Harari G, Parto M, Ren J, Segev M . Topological insulator laser: Experiments. Science. 2018; 359(6381). DOI: 10.1126/science.aar4005. View

2.
He X, Liang E, Yuan J, Qiu H, Chen X, Zhao F . A silicon-on-insulator slab for topological valley transport. Nat Commun. 2019; 10(1):872. PMC: 6382878. DOI: 10.1038/s41467-019-08881-z. View

3.
Yves S, Fleury R, Berthelot T, Fink M, Lemoult F, Lerosey G . Crystalline metamaterials for topological properties at subwavelength scales. Nat Commun. 2017; 8:16023. PMC: 5520060. DOI: 10.1038/ncomms16023. View

4.
Milicevic M, Ozawa T, Montambaux G, Carusotto I, Galopin E, Lemaitre A . Orbital Edge States in a Photonic Honeycomb Lattice. Phys Rev Lett. 2017; 118(10):107403. DOI: 10.1103/PhysRevLett.118.107403. View

5.
Yang Y, Xu Y, Xu T, Wang H, Jiang J, Hu X . Visualization of a Unidirectional Electromagnetic Waveguide Using Topological Photonic Crystals Made of Dielectric Materials. Phys Rev Lett. 2018; 120(21):217401. DOI: 10.1103/PhysRevLett.120.217401. View