6.
de Vries S, Bonvin A
. CPORT: a consensus interface predictor and its performance in prediction-driven docking with HADDOCK. PLoS One. 2011; 6(3):e17695.
PMC: 3064578.
DOI: 10.1371/journal.pone.0017695.
View
7.
Kawabata T
. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins. 2009; 78(5):1195-211.
DOI: 10.1002/prot.22639.
View
8.
Hamosh A, Scott A, Amberger J, Bocchini C, McKusick V
. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2004; 33(Database issue):D514-7.
PMC: 539987.
DOI: 10.1093/nar/gki033.
View
9.
Grillo G, Turi A, Licciulli F, Mignone F, Liuni S, Banfi S
. UTRdb and UTRsite (RELEASE 2010): a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 2009; 38(Database issue):D75-80.
PMC: 2808995.
DOI: 10.1093/nar/gkp902.
View
10.
Auer-Grumbach M, Bode H, Pieber T, Schabhuttl M, Fischer D, Seidl R
. Mutations at Ser331 in the HSN type I gene SPTLC1 are associated with a distinct syndromic phenotype. Eur J Med Genet. 2013; 56(5):266-9.
PMC: 3682180.
DOI: 10.1016/j.ejmg.2013.02.002.
View
11.
Hu J, Ng P
. SIFT Indel: predictions for the functional effects of amino acid insertions/deletions in proteins. PLoS One. 2013; 8(10):e77940.
PMC: 3806772.
DOI: 10.1371/journal.pone.0077940.
View
12.
Masoodi T, Alsaif M, Al Shammari S, Alhamdan A
. Evaluation and identification of damaged single nucleotide polymorphisms in COL1A1 gene involved in osteoporosis. Arch Med Sci. 2013; 9(5):899-905.
PMC: 3832808.
DOI: 10.5114/aoms.2012.28598.
View
13.
Stimpson S, Coorssen J, Myers S
. Mitochondrial protein alterations in a familial peripheral neuropathy caused by the V144D amino acid mutation in the sphingolipid protein, SPTLC1. J Chem Biol. 2015; 8(1):25-35.
PMC: 4286568.
DOI: 10.1007/s12154-014-0125-x.
View
14.
Ng P, Henikoff S
. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003; 31(13):3812-4.
PMC: 168916.
DOI: 10.1093/nar/gkg509.
View
15.
Sherry S, Ward M, Kholodov M, Baker J, Phan L, Smigielski E
. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2000; 29(1):308-11.
PMC: 29783.
DOI: 10.1093/nar/29.1.308.
View
16.
Mignone F, Grillo G, Licciulli F, Iacono M, Liuni S, Kersey P
. UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res. 2004; 33(Database issue):D141-6.
PMC: 539975.
DOI: 10.1093/nar/gki021.
View
17.
Hanada K
. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim Biophys Acta. 2003; 1632(1-3):16-30.
DOI: 10.1016/s1388-1981(03)00059-3.
View
18.
Guex N, Peitsch M, Schwede T
. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009; 30 Suppl 1:S162-73.
DOI: 10.1002/elps.200900140.
View
19.
Raman M, Johnson K, Yard B, Lowther J, Carter L, Naismith J
. The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics. J Biol Chem. 2009; 284(25):17328-17339.
PMC: 2719368.
DOI: 10.1074/jbc.M109.008680.
View
20.
Dedov V, Dedova I, Merrill Jr A, Nicholson G
. Activity of partially inhibited serine palmitoyltransferase is sufficient for normal sphingolipid metabolism and viability of HSN1 patient cells. Biochim Biophys Acta. 2004; 1688(2):168-75.
DOI: 10.1016/j.bbadis.2003.12.005.
View