» Articles » PMID: 32159153

Microfluidic Nutrient Gradient-based Three-dimensional Chondrocyte Culture-on-a-chip As an in Vitro Equine Arthritis Model

Overview
Journal Mater Today Bio
Date 2020 Mar 12
PMID 32159153
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

In this work, we describe a microfluidic three-dimensional (3D) chondrocyte culture mimicking articular chondrocyte morphology, cell distribution, metabolism, and gene expression. This has been accomplished by establishing a physiologic nutrient diffusion gradient across the simulated matrix, while geometric design constraints of the microchambers drive native-like cellular behavior. Primary equine chondrocytes remained viable for the extended culture time of 3 weeks and maintained the low metabolic activity and high Sox9, aggrecan, and Col2 expression typical of articular chondrocytes. Our microfluidic 3D chondrocyte microtissues were further exposed to inflammatory cytokines to establish an animal-free, osteoarthritis model. Results of our study indicate that our microtissue model emulates the basic characteristics of native cartilage and responds to biochemical injury, thus providing a new foundation for exploration of osteoarthritis pathophysiology in both human and veterinary patients.

Citing Articles

Deciphering cartilage neuro-immune interactions and innervation profile through 3D engineered osteoarthritic micropathophysiological system.

Kahraman E, Vasconcelos D, Ribeiro B, Monteiro A, Mastromatteo E, Bortolin A Mater Today Bio. 2025; 31:101491.

PMID: 39896288 PMC: 11786692. DOI: 10.1016/j.mtbio.2025.101491.


Development of a Microfluidic Vascularized Osteochondral Model as a Drug Testing Platform for Osteoarthritis.

Salehi S, Brambilla S, Rasponi M, Lopa S, Moretti M Adv Healthc Mater. 2024; 13(31):e2402350.

PMID: 39370575 PMC: 11650433. DOI: 10.1002/adhm.202402350.


Osteochondral Tissue-On-a-Chip: A Novel Model for Osteoarthritis Research.

Gonzalez-Guede I, Garriguez-Perez D, Fernandez-Gutierrez B Int J Mol Sci. 2024; 25(18).

PMID: 39337321 PMC: 11432185. DOI: 10.3390/ijms25189834.


The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis.

Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z Front Immunol. 2024; 15:1408501.

PMID: 39324139 PMC: 11422143. DOI: 10.3389/fimmu.2024.1408501.


Exploring Osteoarthritis Dynamics: Patient-Specific Cartilage Samples in an Organ-on-a-Chip Model.

Pasztorek M, Fischer J, Otahal A, de Luna A, Nehrer S, Rosser J Cartilage. 2024; :19476035241277654.

PMID: 39235338 PMC: 11569566. DOI: 10.1177/19476035241277654.


References
1.
Lin H, Lozito T, Alexander P, Gottardi R, Tuan R . Stem cell-based microphysiological osteochondral system to model tissue response to interleukin-1β. Mol Pharm. 2014; 11(7):2203-12. PMC: 4086740. DOI: 10.1021/mp500136b. View

2.
Sun L, Wang X, Kaplan D . A 3D cartilage - inflammatory cell culture system for the modeling of human osteoarthritis. Biomaterials. 2011; 32(24):5581-9. PMC: 3109142. DOI: 10.1016/j.biomaterials.2011.04.028. View

3.
Hunter D, Schofield D, Callander E . The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014; 10(7):437-41. DOI: 10.1038/nrrheum.2014.44. View

4.
Sticker D, Rothbauer M, Lechner S, Hehenberger M, Ertl P . Multi-layered, membrane-integrated microfluidics based on replica molding of a thiol-ene epoxy thermoset for organ-on-a-chip applications. Lab Chip. 2015; 15(24):4542-54. DOI: 10.1039/c5lc01028d. View

5.
Bachmann B, Spitz S, Rothbauer M, Jordan C, Purtscher M, Zirath H . Engineering of three-dimensional pre-vascular networks within fibrin hydrogel constructs by microfluidic control over reciprocal cell signaling. Biomicrofluidics. 2018; 12(4):042216. PMC: 6010359. DOI: 10.1063/1.5027054. View