» Articles » PMID: 32156723

High-throughput, Combinatorial Synthesis of Multimetallic Nanoclusters

Abstract

Multimetallic nanoclusters (MMNCs) offer unique and tailorable surface chemistries that hold great potential for numerous catalytic applications. The efficient exploration of this vast chemical space necessitates an accelerated discovery pipeline that supersedes traditional "trial-and-error" experimentation while guaranteeing uniform microstructures despite compositional complexity. Herein, we report the high-throughput synthesis of an extensive series of ultrafine and homogeneous alloy MMNCs, achieved by 1) a flexible compositional design by formulation in the precursor solution phase and 2) the ultrafast synthesis of alloy MMNCs using thermal shock heating (i.e., ∼1,650 K, ∼500 ms). This approach is remarkably facile and easily accessible compared to conventional vapor-phase deposition, and the particle size and structural uniformity enable comparative studies across compositionally different MMNCs. Rapid electrochemical screening is demonstrated by using a scanning droplet cell, enabling us to discover two promising electrocatalysts, which we subsequently validated using a rotating disk setup. This demonstrated high-throughput material discovery pipeline presents a paradigm for facile and accelerated exploration of MMNCs for a broad range of applications.

Citing Articles

Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem.

Hao J, Wang T, Yu R, Cai J, Gao G, Zhuang Z Nat Commun. 2024; 15(1):9020.

PMID: 39424628 PMC: 11489584. DOI: 10.1038/s41467-024-53427-7.


Electrothermally-Driven Ultrafast Chemical Modulation of Multifunctional Nanocarbon Aerogels.

Xia D, Li Q, Mannering J, Qin Y, Li H, Xu Y Small. 2024; 20(47):e2404364.

PMID: 39115351 PMC: 11579976. DOI: 10.1002/smll.202404364.


Future prospects of high-entropy alloys as next-generation industrial electrode materials.

Bolar S, Ito Y, Fujita T Chem Sci. 2024; 15(23):8664-8722.

PMID: 38873068 PMC: 11168093. DOI: 10.1039/d3sc06784j.


Using scalable computer vision to automate high-throughput semiconductor characterization.

Siemenn A, Aissi E, Sheng F, Tiihonen A, Kavak H, Das B Nat Commun. 2024; 15(1):4654.

PMID: 38862468 PMC: 11166656. DOI: 10.1038/s41467-024-48768-2.


Interfacing High-Throughput Electrosynthesis and Mass Spectrometric Analysis of Azines.

Kulesa K, Hirtzel E, Nguyen V, Freitas D, Edwards M, Yan X Anal Chem. 2024; 96(21):8249-8253.

PMID: 38717298 PMC: 11140680. DOI: 10.1021/acs.analchem.4c01110.


References
1.
Yao Y, Huang Z, Xie P, Wu L, Ma L, Li T . High temperature shockwave stabilized single atoms. Nat Nanotechnol. 2019; 14(9):851-857. DOI: 10.1038/s41565-019-0518-7. View

2.
Liang Y, Li Y, Wang H, Zhou J, Wang J, Regier T . Co₃O₄ nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat Mater. 2011; 10(10):780-6. DOI: 10.1038/nmat3087. View

3.
Dai L, Xue Y, Qu L, Choi H, Baek J . Metal-free catalysts for oxygen reduction reaction. Chem Rev. 2015; 115(11):4823-92. DOI: 10.1021/cr5003563. View

4.
Jandeleit , SCHAEFER , Powers , Turner , Weinberg . Combinatorial Materials Science and Catalysis. Angew Chem Int Ed Engl. 1999; 38(17):2494-2532. View

5.
Weiner R, Kunz M, Skrabalak S . Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction. Acc Chem Res. 2015; 48(10):2688-95. DOI: 10.1021/acs.accounts.5b00300. View