Modeling the Impact of Microgravity at the Cellular Level: Implications for Human Disease
Overview
Authors
Affiliations
A lack of gravity experienced during space flight has been shown to have profound effects on human physiology including muscle atrophy, reductions in bone density and immune function, and endocrine disorders. At present, these physiological changes present major obstacles to long-term space missions. What is not clear is which pathophysiological disruptions reflect changes at the cellular level versus changes that occur due to the impact of weightlessness on the entire body. This review focuses on current research investigating the impact of microgravity at the cellular level including cellular morphology, proliferation, and adhesion. As direct research in space is currently cost prohibitive, we describe here the use of microgravity simulators for studies at the cellular level. Such instruments provide valuable tools for cost-effective research to better discern the impact of weightlessness on cellular function. Despite recent advances in understanding the relationship between extracellular forces and cell behavior, very little is understood about cellular biology and mechanotransduction under microgravity conditions. This review will examine recent insights into the impact of simulated microgravity on cell biology and how this technology may provide new insight into advancing our understanding of mechanically driven biology and disease.
Quantum food and nutrition: Subatomic approaches to nourishment for health and well-being.
Wahlqvist M, Wattanapenpaiboon N, Shuai M, Liu H, Zhong L, Zheng J Asia Pac J Clin Nutr. 2025; 34(1):1-9.
PMID: 39828254 PMC: 11742606. DOI: 10.6133/apjcn.202502_34(1).0001.
Freitas L, Bezerra A, Resende-Coelho A, Maciel L, Gomez-Lazaro M, Amorim T Calcif Tissue Int. 2025; 116(1):29.
PMID: 39789144 PMC: 11717846. DOI: 10.1007/s00223-024-01333-x.
Microgravity's effects on miRNA-mRNA regulatory networks in a mouse model of segmental bone defects.
Gautam A, Chakraborty N, Dimitrov G, Hoke A, Miller S, Swift K PLoS One. 2024; 19(12):e0313768.
PMID: 39621621 PMC: 11611151. DOI: 10.1371/journal.pone.0313768.
Articular cartilage loss is an unmitigated risk of human spaceflight.
Hardy J NPJ Microgravity. 2024; 10(1):104.
PMID: 39543227 PMC: 11564753. DOI: 10.1038/s41526-024-00445-w.
van den Nieuwenhof D, Moroni L, Chou J, Hinkelbein J NPJ Microgravity. 2024; 10(1):102.
PMID: 39505879 PMC: 11541851. DOI: 10.1038/s41526-024-00442-z.