Synthesis, Evaluation and Proposed Binding Pose of Substituted Spiro-Oxindole Dihydroquinazolinones As IRAP Inhibitors
Overview
Authors
Affiliations
Insulin-regulated aminopeptidase (IRAP) is a new potential macromolecular target for drugs aimed for treatment of cognitive disorders. Inhibition of IRAP by angiotensin IV (Ang IV) improves the memory and learning in rats. The majority of the known IRAP inhibitors are peptidic in character and suffer from poor pharmacokinetic properties. Herein, we present a series of small non-peptide IRAP inhibitors derived from a spiro-oxindole dihydroquinazolinone screening hit (pIC 5.8). The compounds were synthesized either by a simple microwave (MW)-promoted three-component reaction, or by a two-step one-pot procedure. For decoration of the oxindole ring system, rapid MW-assisted Suzuki-Miyaura cross-couplings (1 min) were performed. A small improvement of potency (pIC 6.6 for the most potent compound) and an increased solubility could be achieved. As deduced from computational modelling and MD simulations it is proposed that the -configuration of the spiro-oxindole dihydroquinazolinones accounts for the inhibition of IRAP.
Angiotensin IV Receptors in the Rat Prefrontal Cortex: Neuronal Expression and NMDA Inhibition.
Papp Z, Ribiczey P, Kato E, Toth Z, Varga Z, Giricz Z Biomedicines. 2025; 13(1).
PMID: 39857655 PMC: 11760436. DOI: 10.3390/biomedicines13010071.
Mpakali A, Georgaki G, Buson A, Findlay A, Foot J, Mauvais F Protein Sci. 2024; 33(9):e5151.
PMID: 39167040 PMC: 11337929. DOI: 10.1002/pro.5151.
Gising J, Honarnejad S, Bras M, Baillie G, McElroy S, Jones P Int J Mol Sci. 2024; 25(7).
PMID: 38612894 PMC: 11012289. DOI: 10.3390/ijms25074084.
Inhibition of Insulin-Regulated Aminopeptidase by Imidazo [1,5-α]pyridines-Synthesis and Evaluation.
Engen K, Lundback T, Yadav A, Puthiyaparambath S, Rosenstrom U, Gising J Int J Mol Sci. 2024; 25(5).
PMID: 38473764 PMC: 10931632. DOI: 10.3390/ijms25052516.
Temponeras I, Chiniadis L, Papakyriakou A, Stratikos E Pharmaceuticals (Basel). 2021; 14(6).
PMID: 34207179 PMC: 8233869. DOI: 10.3390/ph14060584.