» Articles » PMID: 32153627

OSgbm: An Online Consensus Survival Analysis Web Server for Glioblastoma

Overview
Journal Front Genet
Date 2020 Mar 11
PMID 32153627
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. GBM causes poor clinical outcome and high mortality rate, mainly due to the lack of effective targeted therapy and prognostic biomarkers. Here, we developed a user-friendly Online Survival analysis web server for GlioBlastoMa, abbreviated OSgbm, to assess the prognostic value of candidate genes. Currently, OSgbm contains 684 samples with transcriptome profiles and clinical information from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Chinese Glioma Genome Atlas (CGGA). The survival analysis results can be graphically presented by Kaplan-Meier (KM) plot with Hazard ratio (HR) and log-rank value. As demonstration, the prognostic value of 51 previously reported survival associated biomarkers, such as (HR = 2.4120, = 0.0071) and (HR = 1.5578, 0.001), were confirmed in OSgbm. In summary, OSgbm allows users to evaluate and develop prognostic biomarkers of GBM. The web server of OSgbm is available at http://bioinfo.henu.edu.cn/GBM/GBMList.jsp.

Citing Articles

Genealogical tracing of Olea europaea species and pedigree relationships of var. europaea using chloroplast and nuclear markers.

Mariotti R, Belaj A, de la Rosa R, Muleo R, Cirilli M, Forgione I BMC Plant Biol. 2023; 23(1):452.

PMID: 37749509 PMC: 10521521. DOI: 10.1186/s12870-023-04440-3.


Identification and characterization of putative biomarkers and therapeutic axis in Glioblastoma multiforme microenvironment.

Kumari S, Kumar P Front Cell Dev Biol. 2023; 11:1236271.

PMID: 37538397 PMC: 10395518. DOI: 10.3389/fcell.2023.1236271.


Integrating Multi-Omics Analysis for Enhanced Diagnosis and Treatment of Glioblastoma: A Comprehensive Data-Driven Approach.

Behrooz A, Latifi-Navid H, da Silva Rosa S, Swiat M, Wiechec E, Vitorino C Cancers (Basel). 2023; 15(12).

PMID: 37370767 PMC: 10296097. DOI: 10.3390/cancers15123158.


Cytogenetics analysis as the central point of genetic testing in acute myeloid leukemia (AML): a laboratory perspective for clinical applications.

Rosli A, Azlan A, Rajasegaran Y, Mot Y, Heidenreich O, Mohd Yusoff N Clin Exp Med. 2022; 23(4):1137-1159.

PMID: 36229751 DOI: 10.1007/s10238-022-00913-1.


High APLN Expression Predicts Poor Prognosis for Glioma Patients.

Lv S, An Y, Dong H, Xie L, Zheng H, Cheng X Oxid Med Cell Longev. 2022; 2022:8393336.

PMID: 36193059 PMC: 9526648. DOI: 10.1155/2022/8393336.


References
1.
Meng D, Chen Y, Zhao Y, Wang J, Yun D, Yang S . Expression and prognostic significance of TCTN1 in human glioblastoma. J Transl Med. 2014; 12:288. PMC: 4198629. DOI: 10.1186/s12967-014-0288-9. View

2.
Sano T, Lin H, Chen X, Langford L, Koul D, Bondy M . Differential expression of MMAC/PTEN in glioblastoma multiforme: relationship to localization and prognosis. Cancer Res. 1999; 59(8):1820-4. View

3.
Cheng Y, Tsai W, Sung Y, Chang H, Chen Y . Interference with PSMB4 Expression Exerts an Anti-Tumor Effect by Decreasing the Invasion and Proliferation of Human Glioblastoma Cells. Cell Physiol Biochem. 2018; 45(2):819-831. DOI: 10.1159/000487174. View

4.
Rosati A, Poliani P, Todeschini A, Cominelli M, Medicina D, Cenzato M . Glutamine synthetase expression as a valuable marker of epilepsy and longer survival in newly diagnosed glioblastoma multiforme. Neuro Oncol. 2013; 15(5):618-25. PMC: 3635515. DOI: 10.1093/neuonc/nos338. View

5.
Zupancic K, Blejec A, Herman A, Veber M, Verbovsek U, Korsic M . Identification of plasma biomarker candidates in glioblastoma using an antibody-array-based proteomic approach. Radiol Oncol. 2014; 48(3):257-66. PMC: 4110082. DOI: 10.2478/raon-2014-0014. View