» Articles » PMID: 32152587

Structural Insights into Influenza A Virus Ribonucleoproteins Reveal a Processive Helical Track As Transcription Mechanism

Overview
Journal Nat Microbiol
Date 2020 Mar 11
PMID 32152587
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The influenza virus genome consists of eight viral ribonucleoproteins (vRNPs), each consisting of a copy of the polymerase, one of the genomic RNA segments and multiple copies of the nucleoprotein arranged in a double helical conformation. vRNPs are macromolecular machines responsible for messenger RNA synthesis and genome replication, that is, the formation of progeny vRNPs. Here, we describe the structural basis of the transcription process. The mechanism, which we call the 'processive helical track', is based on the extreme flexibility of the helical part of the vRNP that permits a sliding movement between both antiparallel nucleoprotein-RNA strands, thereby allowing the polymerase to move over the genome while bound to both RNA ends. Accordingly, we demonstrate that blocking this movement leads to inhibition of vRNP transcriptional activity. This mechanism also reveals a critical role of the nucleoprotein in maintaining the double helical structure throughout the copying process to make the RNA template accessible to the polymerase.

Citing Articles

Structure of the tilapia lake virus nucleoprotein bound to RNA.

Arragain B, Pelosse M, Huard K, Cusack S Nucleic Acids Res. 2025; 53(4).

PMID: 39995042 PMC: 11850232. DOI: 10.1093/nar/gkaf112.


Purification and Ultramicroscopic Observation of the Influenza A Virus Ribonucleoprotein Complex.

Nakano M, Noda T Methods Mol Biol. 2025; 2890:141-149.

PMID: 39890725 DOI: 10.1007/978-1-0716-4326-6_7.


Nucleic Acid Packaging in Viruses.

Dauden M, Perez-Ruiz M, Carrascosa J, Cuervo A Subcell Biochem. 2024; 105:469-502.

PMID: 39738955 DOI: 10.1007/978-3-031-65187-8_13.


Influenza a virus antiparallel helical nucleocapsid-like pseudo-atomic structure.

Chenavier F, Zarkadas E, Freslon L, Stelfox A, Schoehn G, Ruigrok R Nucleic Acids Res. 2024; 53(3).

PMID: 39673795 PMC: 11797009. DOI: 10.1093/nar/gkae1211.


Semantic segmentation-based detection algorithm for challenging cryo-electron microscopy RNP samples.

Vargas J, Modrego A, Canabal H, Martin-Benito J Front Mol Biosci. 2024; 11:1473609.

PMID: 39411403 PMC: 11473350. DOI: 10.3389/fmolb.2024.1473609.


References
1.
Ortega J, Martin-Benito J, Zurcher T, Valpuesta J, Carrascosa J, Ortin J . Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol. 1999; 74(1):156-63. PMC: 111524. DOI: 10.1128/jvi.74.1.156-163.2000. View

2.
Ye Q, Krug R, Tao Y . The mechanism by which influenza A virus nucleoprotein forms oligomers and binds RNA. Nature. 2006; 444(7122):1078-82. DOI: 10.1038/nature05379. View

3.
Ng A, Zhang H, Tan K, Li Z, Liu J, Chan P . Structure of the influenza virus A H5N1 nucleoprotein: implications for RNA binding, oligomerization, and vaccine design. FASEB J. 2008; 22(10):3638-47. PMC: 2537428. DOI: 10.1096/fj.08-112110. View

4.
Arranz R, Coloma R, Chichon F, Conesa J, Carrascosa J, Valpuesta J . The structure of native influenza virion ribonucleoproteins. Science. 2012; 338(6114):1634-7. DOI: 10.1126/science.1228172. View

5.
Eisfeld A, Neumann G, Kawaoka Y . At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol. 2014; 13(1):28-41. PMC: 5619696. DOI: 10.1038/nrmicro3367. View