» Articles » PMID: 32149416

CLUH Granules Coordinate Translation of Mitochondrial Proteins with MTORC1 Signaling and Mitophagy

Overview
Journal EMBO J
Date 2020 Mar 10
PMID 32149416
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondria house anabolic and catabolic processes that must be balanced and adjusted to meet cellular demands. The RNA-binding protein CLUH (clustered mitochondria homolog) binds mRNAs of nuclear-encoded mitochondrial proteins and is highly expressed in the liver, where it regulates metabolic plasticity. Here, we show that in primary hepatocytes, CLUH coalesces in specific ribonucleoprotein particles that define the translational fate of target mRNAs, such as Pcx, Hadha, and Hmgcs2, to match nutrient availability. Moreover, CLUH granules play signaling roles, by recruiting mTOR kinase and the RNA-binding proteins G3BP1 and G3BP2. Upon starvation, CLUH regulates translation of Hmgcs2, involved in ketogenesis, inhibits mTORC1 activation and mitochondrial anabolic pathways, and promotes mitochondrial turnover, thus allowing efficient reprograming of metabolic function. In the absence of CLUH, a mitophagy block causes mitochondrial clustering that is rescued by rapamycin treatment or depletion of G3BP1 and G3BP2. Our data demonstrate that metabolic adaptation of liver mitochondria to nutrient availability depends on a compartmentalized CLUH-dependent post-transcriptional mechanism that controls both mTORC1 and G3BP signaling and ensures survival.

Citing Articles

Clueless ribonucleoprotein particles display novel dynamics that rely on the availability of functional protein and polysome equilibrium.

Hwang H, Sheard K, Cox R bioRxiv. 2024; .

PMID: 39229069 PMC: 11370489. DOI: 10.1101/2024.08.21.609023.


Mitochondrial protein deacetylation by SIRT3 in osteoclasts promotes bone resorption with aging in female mice.

Richardson K, Adam G, Ling W, Warren A, Marques-Carvalho A, Thostenson J Mol Metab. 2024; 88:102012.

PMID: 39154858 PMC: 11399565. DOI: 10.1016/j.molmet.2024.102012.


Inhibition of K63 ubiquitination by G-Protein pathway suppressor 2 (GPS2) regulates mitochondria-associated translation.

Gao Y, Kwan J, Orofino J, Burrone G, Mitra S, Fan T Pharmacol Res. 2024; 207:107336.

PMID: 39094987 PMC: 11905147. DOI: 10.1016/j.phrs.2024.107336.


CLUH maintains functional mitochondria and translation in motoneuronal axons and prevents peripheral neuropathy.

Zaninello M, Schlegel T, Nolte H, Pirzada M, Savino E, Barth E Sci Adv. 2024; 10(22):eadn2050.

PMID: 38809982 PMC: 11135423. DOI: 10.1126/sciadv.adn2050.


Biologically informed NeuralODEs for genome-wide regulatory dynamics.

Hossain I, Fanfani V, Fischer J, Quackenbush J, Burkholz R Genome Biol. 2024; 25(1):127.

PMID: 38773638 PMC: 11106922. DOI: 10.1186/s13059-024-03264-0.


References
1.
Choo A, Kim S, Vander Heiden M, Mahoney S, Vu H, Yoon S . Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol Cell. 2010; 38(4):487-99. PMC: 2896794. DOI: 10.1016/j.molcel.2010.05.007. View

2.
Melser S, Chatelain E, Lavie J, Mahfouf W, Jose C, Obre E . Rheb regulates mitophagy induced by mitochondrial energetic status. Cell Metab. 2013; 17(5):719-30. DOI: 10.1016/j.cmet.2013.03.014. View

3.
Chandel N . Mitochondria as signaling organelles. BMC Biol. 2014; 12:34. PMC: 4035690. DOI: 10.1186/1741-7007-12-34. View

4.
Gao J, Schatton D, Martinelli P, Hansen H, Pla-Martin D, Barth E . CLUH regulates mitochondrial biogenesis by binding mRNAs of nuclear-encoded mitochondrial proteins. J Cell Biol. 2014; 207(2):213-23. PMC: 4210445. DOI: 10.1083/jcb.201403129. View

5.
Shen H, Mizushima N . At the end of the autophagic road: an emerging understanding of lysosomal functions in autophagy. Trends Biochem Sci. 2013; 39(2):61-71. DOI: 10.1016/j.tibs.2013.12.001. View