» Articles » PMID: 32138319

Enhanced Electrical Conductivity and Seebeck Coefficient in PEDOT:PSS Via a Two-Step Ionic Liquid and NaBH Treatment for Organic Thermoelectrics

Overview
Publisher MDPI
Date 2020 Mar 7
PMID 32138319
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

A two-step approach of improving the thermoelectric properties of Poly(3,4-ethylenedioxythiophene)poly(4-styrenesulfonate) (PEDOT:PSS) via the addition of the ionic liquid, 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) and subsequent reduction with NaBH is presented. The addition of 2.5 v/v% of EMIM:TFSI to PEDOT:PSS increases the electrical conductivity from 3 S·cm to 1439 S·cm at 40 °C. An additional post treatment using the reducing agent, NaBH, increases the Seebeck coefficient of the film from 11 µV·K to 30 µV·K at 40 °C. The combined treatment gives an overall improvement in power factor increase from 0.04 µW·m·K to 33 µW·m·K below 140 °C. Raman and XPS measurements show that the increase in PEDOT:PSS conductivity is due to PSS separation from PEDOT and a conformational change of the PEDOT chains from the benzoid to quinoid molecular orientation. The improved Seebeck coefficient is due to a reduction of charge carriers which is evidenced from the UV-VIS depicting the emergence of polarons.

Citing Articles

Electric Field Distribution in Bipolar Electrochemical Cells: Effects on the Wirefree Electrodeposition of Conducting Polymer Films.

Brady A, Forster R Anal Chem. 2024; 97(1):410-418.

PMID: 39699874 PMC: 11740180. DOI: 10.1021/acs.analchem.4c04454.


Ultraconformable Integrated Wireless Charging Micro-Supercapacitor Skin.

Gao C, You Q, Huang J, Sun J, Yao X, Zhu M Nanomicro Lett. 2024; 16(1):123.

PMID: 38372847 PMC: 10876509. DOI: 10.1007/s40820-024-01352-1.


Selective Charge Carrier Transport and Bipolar Conduction in an Inorganic/Organic Bulk-Phase Composite: Optimization for Low-Temperature Thermoelectric Performance.

Kim C, Kim T, Cho J ACS Appl Mater Interfaces. 2023; 16(4):5036-5049.

PMID: 38105489 PMC: 10836361. DOI: 10.1021/acsami.3c11235.


Hofmeister Series for Conducting Polymers: The Road to Better Electrochemical Activity?.

Volkov A, Apraksin R Polymers (Basel). 2023; 15(11).

PMID: 37299268 PMC: 10255087. DOI: 10.3390/polym15112468.


Highly conductive tissue-like hydrogel interface through template-directed assembly.

Chong J, Sung C, Nam K, Kang T, Kim H, Lee H Nat Commun. 2023; 14(1):2206.

PMID: 37072411 PMC: 10113367. DOI: 10.1038/s41467-023-37948-1.


References
1.
Li Q, Yang J, Chen S, Zou J, Xie W, Zeng X . Highly Conductive PEDOT:PSS Transparent Hole Transporting Layer with Solvent Treatment for High Performance Silicon/Organic Hybrid Solar Cells. Nanoscale Res Lett. 2017; 12(1):506. PMC: 6890909. DOI: 10.1186/s11671-017-2276-5. View

2.
Culebras M, Choi K, Cho C . Recent Progress in Flexible Organic Thermoelectrics. Micromachines (Basel). 2018; 9(12). PMC: 6316489. DOI: 10.3390/mi9120638. View

3.
Kim G, Shao L, Zhang K, Pipe K . Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater. 2013; 12(8):719-23. DOI: 10.1038/nmat3635. View

4.
Keppler A, Himmerlich M, Ikari T, Marschewski M, Pachomow E, Hofft O . Changes of the near-surface chemical composition of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide room temperature ionic liquid under the influence of irradiation. Phys Chem Chem Phys. 2010; 13(3):1174-81. DOI: 10.1039/c0cp01064b. View

5.
Smith P, Su L, Gong W, Nakamura N, Reeja-Jayan B, Shen S . Thermal conductivity of poly(3,4-ethylenedioxythiophene) films engineered by oxidative chemical vapor deposition (oCVD). RSC Adv. 2022; 8(35):19348-19352. PMC: 9080664. DOI: 10.1039/c8ra03302a. View