» Articles » PMID: 32130138

Deep Digital Phenotyping and Digital Twins for Precision Health: Time to Dig Deeper

Overview
Publisher JMIR Publications
Date 2020 Mar 5
PMID 32130138
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

This viewpoint describes the urgent need for more large-scale, deep digital phenotyping to advance toward precision health. It describes why and how to combine real-world digital data with clinical data and omics features to identify someone's digital twin, and how to finally enter the era of patient-centered care and modify the way we view disease management and prevention.

Citing Articles

Externally validated and clinically useful machine learning algorithms to support patient-related decision-making in oncology: a scoping review.

Santos C, Amorim-Lopes M BMC Med Res Methodol. 2025; 25(1):45.

PMID: 39984835 PMC: 11843972. DOI: 10.1186/s12874-025-02463-y.


Randomized controlled study of a digital data driven intervention for depressive and generalized anxiety symptoms.

Fatouros P, Tsirmpas C, Andrikopoulos D, Kaplow S, Kontoangelos K, Papageorgiou C NPJ Digit Med. 2025; 8(1):113.

PMID: 39972054 PMC: 11840063. DOI: 10.1038/s41746-025-01511-7.


Digital Representation of Patients as Medical Digital Twins: Data-Centric Viewpoint.

Demuth S, De Seze J, Edan G, Ziemssen T, Simon F, Gourraud P JMIR Med Inform. 2025; 13:e53542.

PMID: 39881430 PMC: 11793832. DOI: 10.2196/53542.


Medical Digital Twin: A Review on Technical Principles and Clinical Applications.

Tortora M, Pacchiano F, Ferraciolli S, Criscuolo S, Gagliardo C, Jaber K J Clin Med. 2025; 14(2).

PMID: 39860329 PMC: 11765765. DOI: 10.3390/jcm14020324.


Digital Twins Use in Plastic Surgery: A Systematic Review.

Seth I, Lim B, Lu P, Xie Y, Cuomo R, Ng S J Clin Med. 2025; 13(24.

PMID: 39768784 PMC: 11728120. DOI: 10.3390/jcm13247861.


References
1.
Fagherazzi G, Ravaud P . Digital diabetes: Perspectives for diabetes prevention, management and research. Diabetes Metab. 2018; 45(4):322-329. DOI: 10.1016/j.diabet.2018.08.012. View

2.
Teo J, Davila S, Yang C, Hii A, Pua C, Yap J . Digital phenotyping by consumer wearables identifies sleep-associated markers of cardiovascular disease risk and biological aging. Commun Biol. 2019; 2:361. PMC: 6778117. DOI: 10.1038/s42003-019-0605-1. View

3.
Ienca M, Ferretti A, Hurst S, Puhan M, Lovis C, Vayena E . Considerations for ethics review of big data health research: A scoping review. PLoS One. 2018; 13(10):e0204937. PMC: 6181558. DOI: 10.1371/journal.pone.0204937. View

4.
Wynn R, Adams K, Kowalski R, Shivega W, Ratwani R, Miller K . The Patient in Precision Medicine: A Systematic Review Examining Evaluations of Patient-Facing Materials. J Healthc Eng. 2018; 2018:9541621. PMC: 6140003. DOI: 10.1155/2018/9541621. View

5.
Lydon-Staley D, Barnett I, Satterthwaite T, Bassett D . Digital phenotyping for psychiatry: Accommodating data and theory with network science methodologies. Curr Opin Biomed Eng. 2019; 9:8-13. PMC: 6812649. DOI: 10.1016/j.cobme.2018.12.003. View