» Articles » PMID: 32129826

Exaggerated Mitophagy: a Weapon of Striatal Destruction in the Brain?

Overview
Specialty Biochemistry
Date 2020 Mar 5
PMID 32129826
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a 'mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain.

Citing Articles

PolyQ-Expansion Causes Mitochondria Fragmentation Independent of Huntingtin and Is Distinct from Traumatic Brain Injury (TBI)/Mechanical Stress-Mediated Fragmentation Which Results from Cell Death.

Swinter K, Salah D, Rathnayake R, Gunawardena S Cells. 2023; 12(19).

PMID: 37830620 PMC: 10572422. DOI: 10.3390/cells12192406.


Mitophagy-promoting agents and their ability to promote healthy-aging.

Srivastava V, Gross E Biochem Soc Trans. 2023; 51(5):1811-1846.

PMID: 37650304 PMC: 10657188. DOI: 10.1042/BST20221363.


Mitophagy regulation in aging and neurodegenerative disease.

Banarase T, Sammeta S, Wankhede N, Mangrulkar S, Rahangdale S, Aglawe M Biophys Rev. 2023; 15(2):239-255.

PMID: 37124925 PMC: 10133433. DOI: 10.1007/s12551-023-01057-6.


The role of autophagy in death of cardiomyocytes.

Ikeda S, Zablocki D, Sadoshima J J Mol Cell Cardiol. 2021; 165:1-8.

PMID: 34919896 PMC: 8940676. DOI: 10.1016/j.yjmcc.2021.12.006.


Mitochondrial Dysfunction and Mitophagy in Fuchs Endothelial Corneal Dystrophy.

Kumar V, Jurkunas U Cells. 2021; 10(8).

PMID: 34440658 PMC: 8392447. DOI: 10.3390/cells10081888.


References
1.
Sbodio J, Paul B, Machamer C, Snyder S . Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease. Cell Rep. 2013; 4(5):890-7. PMC: 3801179. DOI: 10.1016/j.celrep.2013.08.001. View

2.
Damiano M, Diguet E, Malgorn C, DAurelio M, Galvan L, Petit F . A role of mitochondrial complex II defects in genetic models of Huntington's disease expressing N-terminal fragments of mutant huntingtin. Hum Mol Genet. 2013; 22(19):3869-82. PMC: 3766181. DOI: 10.1093/hmg/ddt242. View

3.
Mealer R, Subramaniam S, Snyder S . Rhes deletion is neuroprotective in the 3-nitropropionic acid model of Huntington's disease. J Neurosci. 2013; 33(9):4206-10. PMC: 3667505. DOI: 10.1523/JNEUROSCI.3730-12.2013. View

4.
Yablonska S, Ganesan V, Ferrando L, Kim J, Pyzel A, Baranova O . Mutant huntingtin disrupts mitochondrial proteostasis by interacting with TIM23. Proc Natl Acad Sci U S A. 2019; 116(33):16593-16602. PMC: 6697818. DOI: 10.1073/pnas.1904101116. View

5.
Sandhir R, Sood A, Mehrotra A, Kamboj S . N-Acetylcysteine reverses mitochondrial dysfunctions and behavioral abnormalities in 3-nitropropionic acid-induced Huntington's disease. Neurodegener Dis. 2012; 9(3):145-57. DOI: 10.1159/000334273. View