» Articles » PMID: 32127719

Accurate Phase Retrieval of Complex 3D Point Spread Functions with Deep Residual Neural Networks

Overview
Journal Appl Phys Lett
Date 2020 Mar 5
PMID 32127719
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Phase retrieval, i.e., the reconstruction of phase information from intensity information, is a central problem in many optical systems. Imaging the emission from a point source such as a single molecule is one example. Here, we demonstrate that a deep residual neural net is able to quickly and accurately extract the hidden phase for general point spread functions (PSFs) formed by Zernike-type phase modulations. Five slices of the 3D PSF at different focal positions within a two micrometer range around the focus are sufficient to retrieve the first six orders of Zernike coefficients.

Citing Articles

Deep-blur: Blind identification and deblurring with convolutional neural networks.

Debarnot V, Weiss P Biol Imaging. 2025; 4():e13.

PMID: 39776610 PMC: 11704139. DOI: 10.1017/S2633903X24000096.


X-ray lens figure errors retrieved by deep learning from several beam intensity images.

Sanchez Del Rio M, Celestre R, Reyes-Herrera J J Synchrotron Radiat. 2024; 31(Pt 5):1001-1009.

PMID: 39042577 PMC: 11371063. DOI: 10.1107/S1600577524004958.


Universal inverse modeling of point spread functions for SMLM localization and microscope characterization.

Liu S, Chen J, Hellgoth J, Muller L, Ferdman B, Karras C Nat Methods. 2024; 21(6):1082-1093.

PMID: 38831208 DOI: 10.1038/s41592-024-02282-x.


Using Diffraction Deep Neural Networks for Indirect Phase Recovery Based on Zernike Polynomials.

Yuan F, Sun Y, Han Y, Chu H, Ma T, Shen H Sensors (Basel). 2024; 24(2).

PMID: 38276390 PMC: 10819540. DOI: 10.3390/s24020698.


Aberration Estimation for Synthetic Aperture Digital Holographic Microscope Using Deep Neural Network.

Jeon H, Jung M, Lee G, Hahn J Sensors (Basel). 2023; 23(22).

PMID: 38005665 PMC: 10674498. DOI: 10.3390/s23229278.


References
1.
Guo H, Korablinova N, Ren Q, Bille J . Wavefront reconstruction with artificial neural networks. Opt Express. 2009; 14(14):6456-62. DOI: 10.1364/oe.14.006456. View

2.
Paine S, Fienup J . Machine learning for improved image-based wavefront sensing. Opt Lett. 2018; 43(6):1235-1238. DOI: 10.1364/OL.43.001235. View

3.
Facomprez A, Beaurepaire E, Debarre D . Accuracy of correction in modal sensorless adaptive optics. Opt Express. 2012; 20(3):2598-612. DOI: 10.1364/OE.20.002598. View

4.
Siemons M, Hulleman C, Thorsen R, Smith C, Stallinga S . High precision wavefront control in point spread function engineering for single emitter localization. Opt Express. 2018; 26(7):8397-8416. DOI: 10.1364/OE.26.008397. View

5.
Yan T, Richardson C, Zhang M, Gahlmann A . Computational correction of spatially variant optical aberrations in 3D single-molecule localization microscopy. Opt Express. 2019; 27(9):12582-12599. DOI: 10.1364/OE.27.012582. View