» Articles » PMID: 32126963

Intracellular Competition for Nitrogen Controls Dinoflagellate Population Density in Corals

Overview
Journal Proc Biol Sci
Specialty Biology
Date 2020 Mar 5
PMID 32126963
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The density of dinoflagellate microalgae in the tissue of symbiotic corals is an important determinant for health and productivity of the coral animal. Yet, the specific mechanism for their regulation and the consequence for coral nutrition are insufficiently understood due to past methodological limitations to resolve the fine-scale metabolic consequences of fluctuating densities. Here, we characterized the physiological and nutritional consequences of symbiont density variations on the colony and tissue level in from the Red Sea. Alterations in symbiont photophysiology maintained coral productivity and host nutrition across a broad range of symbiont densities. However, we demonstrate that density-dependent nutrient competition between individual symbiont cells, manifested as reduced nitrogen assimilation and cell biomass, probably creates the negative feedback mechanism for symbiont population growth that ultimately defines the steady-state density. Despite fundamental changes in symbiont nitrogen assimilation, we found no density-related metabolic optimum beyond which host nutrient assimilation or tissue biomass declined, indicating that host nutrient demand is sufficiently met across the typically observed range of symbiont densities under ambient conditions.

Citing Articles

Nitrogen source type modulates heat stress response in coral symbiont ().

Huang Y, He J, Wang Y, Li L, Lin S Appl Environ Microbiol. 2025; 91(2):e0059124.

PMID: 39772785 PMC: 11837503. DOI: 10.1128/aem.00591-24.


Coral larvae increase nitrogen assimilation to stabilize algal symbiosis and combat bleaching under increased temperature.

Huffmyer A, Ashey J, Strand E, Chiles E, Su X, Putnam H PLoS Biol. 2024; 22(11):e3002875.

PMID: 39531470 PMC: 11556732. DOI: 10.1371/journal.pbio.3002875.


A genome-centric view of the role of the Acropora kenti microbiome in coral health and resilience.

Messer L, Bourne D, Robbins S, Clay M, Bell S, McIlroy S Nat Commun. 2024; 15(1):2902.

PMID: 38575584 PMC: 10995205. DOI: 10.1038/s41467-024-46905-5.


Marine heatwaves modulate the genotypic and physiological responses of reef-building corals to subsequent heat stress.

Brown K, Genin A, Mello-Athayde M, Bergstrom E, Campili A, Chai A Ecol Evol. 2023; 13(12):e10798.

PMID: 38099138 PMC: 10719612. DOI: 10.1002/ece3.10798.


A coral-associated actinobacterium mitigates coral bleaching under heat stress.

Li J, Zou Y, Li Q, Zhang J, Bourne D, Lyu Y Environ Microbiome. 2023; 18(1):83.

PMID: 37996910 PMC: 10668361. DOI: 10.1186/s40793-023-00540-7.


References
1.
Pernice M, Dunn S, Tonk L, Dove S, Domart-Coulon I, Hoppe P . A nanoscale secondary ion mass spectrometry study of dinoflagellate functional diversity in reef-building corals. Environ Microbiol. 2014; 17(10):3570-80. DOI: 10.1111/1462-2920.12518. View

2.
Slater C, Preston T, Weaver L . Stable isotopes and the international system of units. Rapid Commun Mass Spectrom. 2001; 15(15):1270-3. DOI: 10.1002/rcm.328. View

3.
Ezzat L, Maguer J, Grover R, Ferrier-Pages C . New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3- supply. Proc Biol Sci. 2015; 282(1812):20150610. PMC: 4528508. DOI: 10.1098/rspb.2015.0610. View

4.
Kopp C, Domart-Coulon I, Escrig S, Humbel B, Hignette M, Meibom A . Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio. 2015; 6(1). PMC: 4337570. DOI: 10.1128/mBio.02299-14. View

5.
Baums I, Devlin-Durante M, LaJeunesse T . New insights into the dynamics between reef corals and their associated dinoflagellate endosymbionts from population genetic studies. Mol Ecol. 2014; 23(17):4203-15. DOI: 10.1111/mec.12788. View