» Articles » PMID: 32123351

Structure of a Minimal Photosystem I from the Green Alga Dunaliella Salina

Overview
Journal Nat Plants
Specialties Biology
Genetics
Date 2020 Mar 4
PMID 32123351
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Solar energy harnessed by oxygenic photosynthesis supports most of the life forms on Earth. In eukaryotes, photosynthesis occurs in chloroplasts and is achieved by membrane-embedded macromolecular complexes that contain core and peripheral antennae with multiple pigments. The structure of photosystem I (PSI) comprises the core and light-harvesting (LHCI) complexes, which together form PSI-LHCI. Here we determined the structure of PSI-LHCI from the salt-tolerant green alga Dunaliella salina using X-ray crystallography and electron cryo-microscopy. Our results reveal a previously undescribed configuration of the PSI core. It is composed of only 7 subunits, compared with 14-16 subunits in plants and the alga Chlamydomonas reinhardtii, and forms the smallest known PSI. The LHCI is poorly conserved at the sequence level and binds to pigments that form new energy pathways, and the interactions between the individual Lhca1-4 proteins are weakened. Overall, the data indicate the PSI of D. salina represents a different type of the molecular organization that provides important information for reconstructing the plasticity and evolution of PSI.

Citing Articles

Development of a TSR-based method for understanding structural relationships of cofactors and local environments in photosystem I.

Luo L, Milon T, Tandoh E, Galdamez W, Chistoserdov A, Yu J BMC Bioinformatics. 2025; 26(1):15.

PMID: 39810075 PMC: 11731568. DOI: 10.1186/s12859-025-06038-y.


Fe starvation induces a second LHCI tetramer to photosystem I in green algae.

Liu H, Khera R, Grob P, Gallaher S, Purvine S, Nicora C bioRxiv. 2024; .

PMID: 39713434 PMC: 11661224. DOI: 10.1101/2024.12.11.624522.


Photosystem I: A Paradigm for Understanding Biological Environmental Adaptation Mechanisms in Cyanobacteria and Algae.

Tian L, Chen J Int J Mol Sci. 2024; 25(16).

PMID: 39201454 PMC: 11354412. DOI: 10.3390/ijms25168767.


Structure of plant photosystem I in a native assembly state defines PsaF as a regulatory checkpoint.

Naschberger A, Fadeeva M, Klaiman D, Borovikova-Sheinker A, Caspy I, Nelson N Nat Plants. 2024; 10(6):874-879.

PMID: 38816499 PMC: 11208149. DOI: 10.1038/s41477-024-01699-8.


Investigating the Balance between Structural Conservation and Functional Flexibility in Photosystem I.

Nelson N Int J Mol Sci. 2024; 25(10).

PMID: 38791114 PMC: 11121529. DOI: 10.3390/ijms25105073.


References
1.
Iwai M, Grob P, Iavarone A, Nogales E, Niyogi K . A unique supramolecular organization of photosystem I in the moss Physcomitrella patens. Nat Plants. 2018; 4(11):904-909. PMC: 7806276. DOI: 10.1038/s41477-018-0271-1. View

2.
Pi X, Tian L, Dai H, Qin X, Cheng L, Kuang T . Unique organization of photosystem I-light-harvesting supercomplex revealed by cryo-EM from a red alga. Proc Natl Acad Sci U S A. 2018; 115(17):4423-4428. PMC: 5924924. DOI: 10.1073/pnas.1722482115. View

3.
Pinnola A, Alboresi A, Nosek L, Semchonok D, Rameez A, Trotta A . A LHCB9-dependent photosystem I megacomplex induced under low light in Physcomitrella patens. Nat Plants. 2018; 4(11):910-919. DOI: 10.1038/s41477-018-0270-2. View

4.
Amunts A, Brown A, Bai X, Llacer J, Hussain T, Emsley P . Structure of the yeast mitochondrial large ribosomal subunit. Science. 2014; 343(6178):1485-1489. PMC: 4046073. DOI: 10.1126/science.1249410. View

5.
Kuhlbrandt W . Biochemistry. The resolution revolution. Science. 2014; 343(6178):1443-4. DOI: 10.1126/science.1251652. View