» Articles » PMID: 32117670

Implementation of Data-cube Pump-probe KPFM on Organic Solar Cells

Overview
Specialty Biotechnology
Date 2020 Mar 3
PMID 32117670
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

An implementation of pump-probe Kelvin probe force microscopy (pp-KPFM) is reported that enables recording the time-resolved surface potential in single-point mode or over a 2D grid. The spectroscopic data are acquired in open -loop configuration, which simplifies the pp-KPFM operation. The validity of the implementation is probed by measurements using electrical pumping. The dynamical photoresponse of a bulk heterojunction solar cell based on PTB7 and PCBM is subsequently investigated by recording point-spectroscopy curves as a function of the optical power at the cathode and by mapping 2D time-resolved images of the surface photovoltage of the bare organic active layer.

Citing Articles

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination.

Eftekhari Z, Rezaei N, Stokkel H, Zheng J, Cerreta A, Hermes I Beilstein J Nanotechnol. 2023; 14:1059-1067.

PMID: 38025201 PMC: 10644008. DOI: 10.3762/bjnano.14.87.


Dual-heterodyne Kelvin probe force microscopy.

Grevin B, Husainy F, Aldakov D, Aumaitre C Beilstein J Nanotechnol. 2023; 14:1068-1084.

PMID: 38025199 PMC: 10644032. DOI: 10.3762/bjnano.14.88.


Comparing the performance of single and multifrequency Kelvin probe force microscopy techniques in air and water.

Kilpatrick J, Kargin E, Rodriguez B Beilstein J Nanotechnol. 2022; 13:922-943.

PMID: 36161252 PMC: 9490074. DOI: 10.3762/bjnano.13.82.


Direct measurement of surface photovoltage by AC bias Kelvin probe force microscopy.

Miyazaki M, Sugawara Y, Li Y Beilstein J Nanotechnol. 2022; 13:712-720.

PMID: 35957676 PMC: 9344549. DOI: 10.3762/bjnano.13.63.


Nanoscale Charge Accumulation and Its Effect on Carrier Dynamics in Tri-cation Perovskite Structures.

Toth D, Hailegnaw B, Richheimer F, Castro F, Kienberger F, Scharber M ACS Appl Mater Interfaces. 2020; 12(42):48057-48066.

PMID: 32969644 PMC: 7586297. DOI: 10.1021/acsami.0c10641.

References
1.
Stolterfoht M, Armin A, Philippa B, Neher D . The Role of Space Charge Effects on the Competition between Recombination and Extraction in Solar Cells with Low-Mobility Photoactive Layers. J Phys Chem Lett. 2016; 7(22):4716-4721. DOI: 10.1021/acs.jpclett.6b02106. View

2.
Sadewasser S, Nicoara N, Solares S . Artifacts in time-resolved Kelvin probe force microscopy. Beilstein J Nanotechnol. 2018; 9:1272-1281. PMC: 5942368. DOI: 10.3762/bjnano.9.119. View

3.
Garrett J, Tennyson E, Hu M, Huang J, Munday J, Leite M . Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells. Nano Lett. 2017; 17(4):2554-2560. DOI: 10.1021/acs.nanolett.7b00289. View

4.
Almadori Y, Bendiab N, Grevin B . Multimodal Kelvin Probe Force Microscopy Investigations of a Photovoltaic WSe/MoS Type-II Interface. ACS Appl Mater Interfaces. 2017; 10(1):1363-1373. DOI: 10.1021/acsami.7b14616. View

5.
Fernandez Garrillo P, Grevin B, Borowik L . Numerical analysis of single-point spectroscopy curves used in photo-carrier dynamics measurements by Kelvin probe force microscopy under frequency-modulated excitation. Beilstein J Nanotechnol. 2018; 9:1834-1843. PMC: 6037021. DOI: 10.3762/bjnano.9.175. View