» Articles » PMID: 32116987

Effects of Aberrant MiR-384-5p Expression on Learning and Memory in a Rat Model of Attention Deficit Hyperactivity Disorder

Overview
Journal Front Neurol
Specialty Neurology
Date 2020 Mar 3
PMID 32116987
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Attention deficit hyperactivity disorder (ADHD) is a common neuropsychiatric disorder characterized by inattention, hyperactivity, and impulsivity. It may be accompanied by learning difficulties and working memory deficits. Few studies have examined the role of miRNAs in cognitive dysfunction in ADHD. This study investigated the effects of aberrant miR-384-5p expression on learning and memory in a widely used ADHD rat model. Lentiviral vectors were injected into the lateral ventricles of the rats to increase or decrease miR-384-5p level. To determine whether aberrant miR-384-5p expression affects learning and memory, spontaneous activity and cognitive function were assessed with the open field and Morris water maze tests. In the place navigation experiment of the Morris water maze test, time, and total swimming distance to reach the platform decreased compared to the control group when miR-384-5p was overexpressed, whereas down-regulation of miR-384-5p had the opposite effect. There were no obvious changes in brain tissue morphology following miR-384-5p overexpression or inhibition; however, dopamine (DA) receptor D1 (DRD1) level has decreased and increased, respectively, in the prefrontal cortex (PFC). The luciferase activity of the wild-type DRD1 group has decreased in luciferase reporter assay. Cyclic AMP response element-binding protein (CREB) phosphorylation has increased, and DA transporter (DAT) level has decreased in the PFC of spontaneously hypertensive rats (SHR) by miR-384-5p overexpression. On the other hand, miR-384-5p suppression increased DRD1 and decreased DAT and CREB protein levels relative to control rats. These findings suggest that miR-384-5p may play a critical role in learning and memory impairment in ADHD.

Citing Articles

MicroRNAs as potential biomarkers for diagnosis of attention deficit hyperactivity disorder.

Martinez B, Peplow P Neural Regen Res. 2023; 19(3):557-562.

PMID: 37721284 PMC: 10581556. DOI: 10.4103/1673-5374.380880.


Attention-deficit/hyperactive disorder updates.

Kessi M, Duan H, Xiong J, Chen B, He F, Yang L Front Mol Neurosci. 2022; 15:925049.

PMID: 36211978 PMC: 9532551. DOI: 10.3389/fnmol.2022.925049.


MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases.

Ramirez A, Gil-Jaramillo N, Tapias M, Gonzalez-Giraldo Y, Pinzon A, Puentes-Rozo P Life (Basel). 2022; 12(9).

PMID: 36143475 PMC: 9505027. DOI: 10.3390/life12091439.


miRNA-384-3p alleviates sevoflurane-induced nerve injury by inhibiting Aak1 kinase in neonatal rats.

Chen Y, Gao X, Pei H Brain Behav. 2022; 12(7):e2556.

PMID: 35726359 PMC: 9304839. DOI: 10.1002/brb3.2556.


A New Player in Depression: MiRNAs as Modulators of Altered Synaptic Plasticity.

Gao Y, Zhang Y, Wang H, Deng Y, Li N Int J Mol Sci. 2022; 23(9).

PMID: 35562946 PMC: 9101307. DOI: 10.3390/ijms23094555.


References
1.
Whitaker C, Wei H . An alternate cAMP pathway Epac promotes hippocampal long-term depression. J Physiol. 2009; 587(Pt 13):3067-8. PMC: 2727013. DOI: 10.1113/jphysiol.2009.175216. View

2.
Gomez A, Midde N, Mactutus C, Booze R, Zhu J . Environmental enrichment alters nicotine-mediated locomotor sensitization and phosphorylation of DARPP-32 and CREB in rat prefrontal cortex. PLoS One. 2012; 7(8):e44149. PMC: 3432100. DOI: 10.1371/journal.pone.0044149. View

3.
Kandemir H, Erdal M, Selek S, Ay O, Karababa I, Kandemir S . Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2014; 580:158-62. DOI: 10.1016/j.neulet.2014.07.060. View

4.
Jichao S, Xinmin H, Xianguo R, Dongqi Y, Rongyi Z, Shuang L . Saikosaponin A Alleviates Symptoms of Attention Deficit Hyperactivity Disorder through Downregulation of DAT and Enhancing BDNF Expression in Spontaneous Hypertensive Rats. Evid Based Complement Alternat Med. 2017; 2017:2695903. PMC: 5331296. DOI: 10.1155/2017/2695903. View

5.
Rizzo R, Ragusa M, Barbagallo C, Sammito M, Gulisano M, Cali P . Circulating miRNAs profiles in Tourette syndrome: molecular data and clinical implications. Mol Brain. 2015; 8:44. PMC: 4513635. DOI: 10.1186/s13041-015-0133-y. View