» Articles » PMID: 32107385

Spectral Cues Are Necessary to Encode Azimuthal Auditory Space in the Mouse Superior Colliculus

Overview
Journal Nat Commun
Specialty Biology
Date 2020 Feb 29
PMID 32107385
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Sound localization plays a critical role in animal survival. Three cues can be used to compute sound direction: interaural timing differences (ITDs), interaural level differences (ILDs) and the direction-dependent spectral filtering by the head and pinnae (spectral cues). Little is known about how spectral cues contribute to the neural encoding of auditory space. Here we report on auditory space encoding in the mouse superior colliculus (SC). We show that the mouse SC contains neurons with spatially-restricted receptive fields (RFs) that form an azimuthal topographic map. We found that frontal RFs require spectral cues and lateral RFs require ILDs. The neurons with frontal RFs have frequency tunings that match the spectral structure of the specific head and pinna filter for sound coming from the front. These results demonstrate that patterned spectral cues in combination with ILDs give rise to the topographic map of azimuthal auditory space.

Citing Articles

Population coding of auditory space in the dorsal inferior colliculus persists with altered binaural cues.

Rogalla M, Quass G, Yardley H, Martinez-Voigt C, Ford A, Wallace G bioRxiv. 2024; .

PMID: 39314270 PMC: 11419156. DOI: 10.1101/2024.09.13.612867.


Distinct Neuron Types Contribute to Hybrid Auditory Spatial Coding.

Chen C, Song S J Neurosci. 2024; 44(43).

PMID: 39261006 PMC: 11502229. DOI: 10.1523/JNEUROSCI.0159-24.2024.


Auditory cortex conveys non-topographic sound localization signals to visual cortex.

Mazo C, Baeta M, Petreanu L Nat Commun. 2024; 15(1):3116.

PMID: 38600132 PMC: 11006897. DOI: 10.1038/s41467-024-47546-4.


Sound elicits stereotyped facial movements that provide a sensitive index of hearing abilities in mice.

Clayton K, Stecyk K, Guo A, Chambers A, Chen K, Hancock K Curr Biol. 2024; 34(8):1605-1620.e5.

PMID: 38492568 PMC: 11043000. DOI: 10.1016/j.cub.2024.02.057.


Auditory Spatial Discrimination and Sound Localization in Single-Sided Deaf Participants Provided with a Cochlear Implant.

Ludwig A, Meuret S, Battmer R, Fuchs M, Ernst A, Schonwiesner M Audiol Neurootol. 2023; 29(3):193-206.

PMID: 38043510 PMC: 11152034. DOI: 10.1159/000534686.


References
1.
Campbell R, Doubell T, Nodal F, Schnupp J, King A . Interaural timing cues do not contribute to the map of space in the ferret superior colliculus: a virtual acoustic space study. J Neurophysiol. 2005; 95(1):242-54. DOI: 10.1152/jn.00827.2005. View

2.
Grothe B, Pecka M, McAlpine D . Mechanisms of sound localization in mammals. Physiol Rev. 2010; 90(3):983-1012. DOI: 10.1152/physrev.00026.2009. View

3.
Slee S, Young E . Linear processing of interaural level difference underlies spatial tuning in the nucleus of the brachium of the inferior colliculus. J Neurosci. 2013; 33(9):3891-904. PMC: 3613225. DOI: 10.1523/JNEUROSCI.3437-12.2013. View

4.
Keating P, Dahmen J, King A . Context-specific reweighting of auditory spatial cues following altered experience during development. Curr Biol. 2013; 23(14):1291-9. PMC: 3722484. DOI: 10.1016/j.cub.2013.05.045. View

5.
Slattery 3rd W, Middlebrooks J . Monaural sound localization: acute versus chronic unilateral impairment. Hear Res. 1994; 75(1-2):38-46. DOI: 10.1016/0378-5955(94)90053-1. View