Mining the Metabolome and the Agricultural and Pharmaceutical Potential of Sea Foam-Derived Fungi
Overview
Pharmacology
Affiliations
Sea foam harbors a diverse range of fungal spores with biological and ecological relevance in marine environments. Fungi are known as the producers of secondary metabolites that are used in health and agricultural sectors, however the potentials of sea foam-derived fungi have remained unexplored. In this study, organic extracts of six foam-derived fungal isolates belonging to the genera , , and were investigated for their antimicrobial activity against plant and human pathogens and anticancer activity. In parallel, an untargeted metabolomics study using UPLC-QToF-MS/MS-based molecular networking (MN) was performed to unlock their chemical inventory. strains were identified as the most prolific producers of compounds with an average of 165 parent ions per strain. In total, 49 known mycotoxins and functional metabolites were annotated to specific and ubiquitous parent ions, revealing considerable chemical diversity. This allowed the identification of putative new derivatives, such as a new analog of the antimicrobial tetrapeptide, fungisporin. Regarding bioactivity, the sp. isolate 31.68F1B showed a strong and broad-spectrum activity against seven plant and human pathogens, with the phytopathogen and the human pathogen being the most susceptible (IC values 2.2 and 6.3 µg/mL, respectively). This is the first study mining the metabolome of the sea foam-derived fungi by MS/MS-based molecular networking, and assessing their biological activities against phytopathogens.
Marine Compounds with Anti- sp. Activity: A Promised "Land" for New Antifungals.
Alves A, Cruz-Martins N, Rodrigues C J Fungi (Basel). 2022; 8(7).
PMID: 35887426 PMC: 9320905. DOI: 10.3390/jof8070669.
Kuvarina A, Gavryushina I, Sykonnikov M, Efimenko T, Markelova N, Bilanenko E Molecules. 2022; 27(5).
PMID: 35268835 PMC: 8911692. DOI: 10.3390/molecules27051736.
Induction of Isochromanones by Co-Cultivation of the Marine Fungus sp. and the Phytopathogen .
Oppong-Danquah E, Blumel M, Scarpato S, Mangoni A, Tasdemir D Int J Mol Sci. 2022; 23(2).
PMID: 35054969 PMC: 8775470. DOI: 10.3390/ijms23020782.
Goncalves M, Hilario S, Van de Peer Y, Esteves A, Alves A J Fungi (Basel). 2022; 8(1).
PMID: 35049971 PMC: 8780691. DOI: 10.3390/jof8010031.
Wang X, Pecoraro L Biology (Basel). 2021; 10(9).
PMID: 34571771 PMC: 8464750. DOI: 10.3390/biology10090894.