Ocana A, Pandiella A, Privat C, Bravo I, Luengo-Oroz M, Amir E
Biomark Res. 2025; 13(1):45.
PMID: 40087789
DOI: 10.1186/s40364-025-00758-2.
Borowko M
Int J Mol Sci. 2025; 26(5).
PMID: 40076551
PMC: 11899879.
DOI: 10.3390/ijms26051924.
Briganti V, Lunghi A
NPJ Comput Mater. 2025; 11(1):62.
PMID: 40060706
PMC: 11885155.
DOI: 10.1038/s41524-025-01547-z.
Ganscha S, Unke O, Ahlin D, Maennel H, Kashubin S, Muller K
Sci Data. 2025; 12(1):406.
PMID: 40057556
PMC: 11890765.
DOI: 10.1038/s41597-025-04720-7.
Cui T, Tang C, Zhou D, Li Y, Gong X, Ouyang W
Nat Commun. 2025; 16(1):1891.
PMID: 39987178
PMC: 11846885.
DOI: 10.1038/s41467-025-57101-4.
Machine learning in molecular biophysics: Protein allostery, multi-level free energy simulations, and lipid phase transitions.
Cui Q
Biophys Rev (Melville). 2025; 6(1):011305.
PMID: 39957913
PMC: 11825181.
DOI: 10.1063/5.0248589.
Crash testing machine learning force fields for molecules, materials, and interfaces: model analysis in the TEA Challenge 2023.
Poltavsky I, Charkin-Gorbulin A, Puleva M, Fonseca G, Batatia I, Browning N
Chem Sci. 2025; 16(8):3720-3737.
PMID: 39935506
PMC: 11809572.
DOI: 10.1039/d4sc06529h.
CaML: Chemistry-informed machine learning explains mutual changes between protein conformations and calcium ions in calcium-binding proteins using structural and topological features.
Zhang P, Nde J, Eliaz Y, Jennings N, Cieplak P, Cheung M
Protein Sci. 2025; 34(2):e70023.
PMID: 39865355
PMC: 11761698.
DOI: 10.1002/pro.70023.
Toward Grid-Based Models for Molecular Association.
Zupan H, Keller B
J Chem Theory Comput. 2025; 21(2):614-628.
PMID: 39803919
PMC: 11780749.
DOI: 10.1021/acs.jctc.4c01293.
Analyzing Atomic Interactions in Molecules as Learned by Neural Networks.
Esders M, Schnake T, Lederer J, Kabylda A, Montavon G, Tkatchenko A
J Chem Theory Comput. 2025; 21(2):714-729.
PMID: 39792788
PMC: 11780731.
DOI: 10.1021/acs.jctc.4c01424.
Predicting electronic screening for fast Koopmans spectral functional calculations.
Schubert Y, Luber S, Marzari N, Linscott E
NPJ Comput Mater. 2024; 10(1):299.
PMID: 39712949
PMC: 11659161.
DOI: 10.1038/s41524-024-01484-3.
Complete and Efficient Covariants for Three-Dimensional Point Configurations with Application to Learning Molecular Quantum Properties.
Maennel H, Unke O, Muller K
J Phys Chem Lett. 2024; 15(51):12513-12519.
PMID: 39670428
PMC: 11684023.
DOI: 10.1021/acs.jpclett.4c02376.
Efficient Composite Infrared Spectroscopy: Combining the Double-Harmonic Approximation with Machine Learning Potentials.
Pracht P, Pillai Y, Kapil V, Csanyi G, Gonnheimer N, Vondrak M
J Chem Theory Comput. 2024; 20(24):10986-11004.
PMID: 39665618
PMC: 11672665.
DOI: 10.1021/acs.jctc.4c01157.
Accuracy of Reaction Coordinate Based Rate Theories for Modelling Chemical Reactions: Insights From the Thermal Isomerization in Retinal.
Ghysbrecht S, Donati L, Keller B
J Comput Chem. 2024; 46(1):e27529.
PMID: 39659054
PMC: 11632214.
DOI: 10.1002/jcc.27529.
General-purpose machine-learned potential for 16 elemental metals and their alloys.
Song K, Zhao R, Liu J, Wang Y, Lindgren E, Wang Y
Nat Commun. 2024; 15(1):10208.
PMID: 39587098
PMC: 11589123.
DOI: 10.1038/s41467-024-54554-x.
Capturing Dichotomic Solvent Behavior in Solute-Solvent Reactions with Neural Network Potentials.
Celerse F, Juraskova V, Das S, Wodrich M, Corminboeuf C
J Chem Theory Comput. 2024; 20(23):10350-10361.
PMID: 39570795
PMC: 11635972.
DOI: 10.1021/acs.jctc.4c01201.
Melting simulations of high-entropy carbonitrides by deep learning potentials.
Baidyshev V, Tantardini C, Kvashnin A
Sci Rep. 2024; 14(1):28678.
PMID: 39562604
PMC: 11576752.
DOI: 10.1038/s41598-024-78377-4.
AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics.
Mirarchi A, Pelaez R, Simeon G, De Fabritiis G
J Chem Theory Comput. 2024; 20(22):9871-9878.
PMID: 39514694
PMC: 11603603.
DOI: 10.1021/acs.jctc.4c01239.
Hyperparameter Optimization for Atomic Cluster Expansion Potentials.
Thomas du Toit D, Zhou Y, Deringer V
J Chem Theory Comput. 2024; 20(22):10103-10113.
PMID: 39503163
PMC: 11603601.
DOI: 10.1021/acs.jctc.4c01012.
A Study of the Methane Oxidation Mechanism and Reaction Pathways Using Reactive Molecular Simulation and Nonlinear Manifold Learning.
Wang J, Tang J, Chen F
ACS Omega. 2024; 9(43):43894-43907.
PMID: 39493979
PMC: 11525525.
DOI: 10.1021/acsomega.4c07094.