PlasGUN: Gene Prediction in Plasmid Metagenomic Short Reads Using Deep Learning
Overview
Affiliations
Summary: We present the first tool of gene prediction, PlasGUN, for plasmid metagenomic short-read data. The tool, developed based on deep learning algorithm of multiple input Convolutional Neural Network, demonstrates much better performance when tested on a benchmark dataset of artificial short reads and presents more reliable results for real plasmid metagenomic data than traditional gene prediction tools designed primarily for chromosome-derived short reads.
Availability And Implementation: The PlasGUN software is available at http://cqb.pku.edu.cn/ZhuLab/PlasGUN/ or https://github.com/zhenchengfang/PlasGUN/.
Supplementary Information: Supplementary data are available at Bioinformatics online.
Deep learning in microbiome analysis: a comprehensive review of neural network models.
Przymus P, Rykaczewski K, Martin-Segura A, Truu J, Carrillo De Santa Pau E, Kolev M Front Microbiol. 2025; 15:1516667.
PMID: 39911715 PMC: 11794229. DOI: 10.3389/fmicb.2024.1516667.
Deep learning methods in metagenomics: a review.
Roy G, Prifti E, Belda E, Zucker J Microb Genom. 2024; 10(4).
PMID: 38630611 PMC: 11092122. DOI: 10.1099/mgen.0.001231.
Wang Y, Gai J, Hou Q, Zhao H, Shan C, Guo Z World J Microbiol Biotechnol. 2023; 39(12):337.
PMID: 37814055 DOI: 10.1007/s11274-023-03772-4.
Li M, Wang C, Guo Q, Xu C, Xie Z, Tan J Front Cell Infect Microbiol. 2022; 12:846063.
PMID: 35493727 PMC: 9040671. DOI: 10.3389/fcimb.2022.846063.
Fang Z, Zhou H Front Microbiol. 2021; 12:615711.
PMID: 33613485 PMC: 7894196. DOI: 10.3389/fmicb.2021.615711.