» Articles » PMID: 32089116

'Hierarchy' in the Organization of Brain Networks

Overview
Specialty Biology
Date 2020 Feb 25
PMID 32089116
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Concepts shape the interpretation of facts. One of the most popular concepts in systems neuroscience is that of 'hierarchy'. However, this concept has been interpreted in many different ways, which are not well aligned. This observation suggests that the concept is ill defined. Using the example of the organization of the primate visual cortical system, we explore several contexts in which 'hierarchy' is currently used in the description of brain networks. We distinguish at least four different uses, specifically, 'hierarchy' as a topological sequence of projections, as a gradient of features, as a progression of scales, or as a sorting of laminar projection patterns. We discuss the interpretation and functional implications of the different notions of 'hierarchy' in these contexts and suggest that more specific terms than 'hierarchy' should be used for a deeper understanding of the different dimensions of the organization of brain networks. This article is part of the theme issue 'Unifying the essential concepts of biological networks: biological insights and philosophical foundations'.

Citing Articles

Brain areas for reversible symbolic reference, a potential singularity of the human brain.

van Kerkoerle T, Pape L, Ekramnia M, Feng X, Tasserie J, Dupont M Elife. 2025; 12.

PMID: 39937096 PMC: 11820117. DOI: 10.7554/eLife.87380.


The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow.

Paquola C, Garber M, Frassle S, Royer J, Zhou Y, Tavakol S Nat Neurosci. 2025; 28(3):654-664.

PMID: 39875581 PMC: 11893468. DOI: 10.1038/s41593-024-01868-0.


Hierarchical gradients of multiple timescales in the mammalian forebrain.

Song M, Shin E, Seo H, Soltani A, Steinmetz N, Lee D Proc Natl Acad Sci U S A. 2024; 121(51):e2415695121.

PMID: 39671181 PMC: 11665873. DOI: 10.1073/pnas.2415695121.


Stereological Analysis of the Rhesus Monkey Perirhinal and Parahippocampal Cortices.

Villard J, Chareyron L, Banta Lavenex P, Amaral D, Lavenex P J Comp Neurol. 2024; 532(11):e25684.

PMID: 39552202 PMC: 11812466. DOI: 10.1002/cne.25684.


Sex Differences in Hierarchical and Modular Organization of Functional Brain Networks: Insights from Hierarchical Entropy and Modularity Analysis.

Chen W, Zhan L, Jia T Entropy (Basel). 2024; 26(10).

PMID: 39451941 PMC: 11507829. DOI: 10.3390/e26100864.


References
1.
van den Heuvel M, Scholtens L, Barrett L, Hilgetag C, de Reus M . Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex. J Neurosci. 2015; 35(41):13943-8. PMC: 6608182. DOI: 10.1523/JNEUROSCI.2630-15.2015. View

2.
Beul S, Grant S, Hilgetag C . A predictive model of the cat cortical connectome based on cytoarchitecture and distance. Brain Struct Funct. 2014; 220(6):3167-84. PMC: 4575693. DOI: 10.1007/s00429-014-0849-y. View

3.
Schmidt M, Bakker R, Hilgetag C, Diesmann M, van Albada S . Multi-scale account of the network structure of macaque visual cortex. Brain Struct Funct. 2017; 223(3):1409-1435. PMC: 5869897. DOI: 10.1007/s00429-017-1554-4. View

4.
Zeki S . The Rough Seas of Cortical Cartography. Trends Neurosci. 2018; 41(5):242-244. DOI: 10.1016/j.tins.2018.03.005. View

5.
Scholtens L, Schmidt R, de Reus M, van den Heuvel M . Linking macroscale graph analytical organization to microscale neuroarchitectonics in the macaque connectome. J Neurosci. 2014; 34(36):12192-205. PMC: 6608464. DOI: 10.1523/JNEUROSCI.0752-14.2014. View