» Articles » PMID: 32072383

Targeted Intravenous Nanoparticle Delivery: Role of Flow and Endothelial Glycocalyx Integrity

Overview
Journal Ann Biomed Eng
Date 2020 Feb 20
PMID 32072383
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Therapies for atherosclerotic cardiovascular disease should target early disease stages and specific vascular sites where disease occurs. Endothelial glycocalyx (GCX) degradation compromises endothelial barrier function and increases vascular permeability. This initiates pro-atherosclerotic lipids and inflammatory cells to penetrate vessel walls, and at the same time this can be leveraged for targeted drug delivery. In prior cell culture studies, GCX degradation significantly increased endothelial cell uptake of nanoparticle vehicles that are designed for drug delivery, compared to the effects of intact GCX. The present study assessed if the cell culture findings translate to selective nanoparticle uptake in animal vessels. In mice, the left carotid artery (LCA) was partially ligated to disturb blood flow, which induces GCX degradation, endothelial dysfunction, and atherosclerosis. After ligation, the LCA vessel wall exhibited a loss of continuity of the GCX layer on the intima. 10-nm gold nanospheres (GNS) coated with polyethylene glycol (PEG) were delivered intravenously. GCX degradation in the ligated LCA correlated to increased GNS infiltration of the ligated LCA wall. This suggests that GCX dysfunction, which coincides with atherosclerosis, can indeed be targeted for enhanced drug delivery, offering a new approach in cardiovascular disease therapy.

Citing Articles

The Role of Glycocalyx Diversity and Thickness for Nanoparticle Internalization in M1-/M2-like Macrophages.

Liu Y, He Y, Xu H, Remmo A, Wiekhorst F, Heymann F Nano Lett. 2024; 24(49):15607-15614.

PMID: 39621943 PMC: 11638944. DOI: 10.1021/acs.nanolett.4c04004.


Glycocalyx Interactions Modulate the Cellular Uptake of Albumin-Coated Nanoparticles.

Olivieri Jr P, Assis I, Lima A, Hassan S, Torquato R, Hayashi J ACS Appl Bio Mater. 2024; 7(11):7365-7377.

PMID: 39470630 PMC: 11577421. DOI: 10.1021/acsabm.4c01012.


Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium.

Cong X, Zhang Z, Li H, Yang Y, Zhang Y, Sun T J Nanobiotechnology. 2024; 22(1):620.

PMID: 39396002 PMC: 11470712. DOI: 10.1186/s12951-024-02892-9.


Impact of mechanical cues on key cell functions and cell-nanoparticle interactions.

Elblova P, Lunova M, Dejneka A, Jirsa M, Lunov O Discov Nano. 2024; 19(1):106.

PMID: 38907808 PMC: 11193707. DOI: 10.1186/s11671-024-04052-2.


Checkpoint Inhibitor-Related Capillary Leak Syndrome (CLS).

Raja A, Kumar A, Abdullah M, Daniyal M, Polani A Cureus. 2024; 16(3):e55719.

PMID: 38586654 PMC: 10998660. DOI: 10.7759/cureus.55719.


References
1.
Mitra R, Qiao J, Madhavan S, ONeil G, Ritchie B, Kulkarni P . The comparative effects of high fat diet or disturbed blood flow on glycocalyx integrity and vascular inflammation. Transl Med Commun. 2019; 3. PMC: 6447085. DOI: 10.1186/s41231-018-0029-9. View

2.
Reitsma S, Slaaf D, Vink H, van Zandvoort M, Oude Egbrink M . The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007; 454(3):345-59. PMC: 1915585. DOI: 10.1007/s00424-007-0212-8. View

3.
Cheng M, Kumar R, Sridhar S, Webster T, Ebong E . Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting. Int J Nanomedicine. 2016; 11:3305-15. PMC: 4959595. DOI: 10.2147/IJN.S106299. View

4.
Prydz K . Determinants of Glycosaminoglycan (GAG) Structure. Biomolecules. 2015; 5(3):2003-22. PMC: 4598785. DOI: 10.3390/biom5032003. View

5.
Wang H, Lin Y, Nienhaus K, Nienhaus G . The protein corona on nanoparticles as viewed from a nanoparticle-sizing perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2017; 10(4):e1500. DOI: 10.1002/wnan.1500. View