» Articles » PMID: 32069420

Molecular Monolayer Strong Coupling in Dielectric Soft Microcavities

Overview
Journal Nano Lett
Specialty Biotechnology
Date 2020 Feb 19
PMID 32069420
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We report strong coupling of a monolayer of J-aggregated dye molecules to the whispering gallery modes of a dielectric microsphere at room temperature. We systematically studied the evolution of strong coupling as the number of layers of dye molecules was increased and found the Rabi splitting to rise from 56 meV for a single layer to 94 meV for four layers of dye molecules. We compare our experimental results with two-dimensional (2D) numerical simulations and a simple coupled oscillator model, finding good agreement. We anticipate that these results will act as a stepping stone for integrating molecule-cavity strong coupling in a microfluidic environment since microspheres can be easily trapped and manipulated in such an environment and provide open access cavities.

Citing Articles

Molecular Strong Coupling and Cavity Finesse.

Menghrajani K, Vasista A, Tan W, Thomas P, Herrera F, Barnes W J Phys Chem Lett. 2024; 15(29):7449-7457.

PMID: 39008808 PMC: 11284854. DOI: 10.1021/acs.jpclett.4c00782.


Role of Symmetry Breaking in Observing Strong Molecule-Cavity Coupling Using Dielectric Microspheres.

Vasista A, Dias E, de Abajo F, Barnes W Nano Lett. 2022; 22(16):6737-6743.

PMID: 35920815 PMC: 9413215. DOI: 10.1021/acs.nanolett.2c02274.


Principle and Applications of Multimode Strong Coupling Based on Surface Plasmons.

He Z, Xu C, He W, He J, Zhou Y, Li F Nanomaterials (Basel). 2022; 12(8).

PMID: 35457950 PMC: 9024653. DOI: 10.3390/nano12081242.


Strong Coupling of Multimolecular Species to Soft Microcavities.

Vasista A, Barnes W J Phys Chem Lett. 2022; 13(4):1019-1024.

PMID: 35061940 PMC: 8819692. DOI: 10.1021/acs.jpclett.1c03678.


Polariton assisted photoemission from a layered molecular material: role of vibrational states and molecular absorption.

Vasista A, Menghrajani K, Barnes W Nanoscale. 2021; 13(34):14497-14505.

PMID: 34473173 PMC: 8412029. DOI: 10.1039/d1nr03913j.


References
1.
Gentile M, Nunez-Sanchez S, Barnes W . Optical field-enhancement and subwavelength field-confinement using excitonic nanostructures. Nano Lett. 2014; 14(5):2339-44. DOI: 10.1021/nl404712t. View

2.
MacDonald M, Spalding G, Dholakia K . Microfluidic sorting in an optical lattice. Nature. 2003; 426(6965):421-4. DOI: 10.1038/nature02144. View

3.
Zengin G, Wersall M, Nilsson S, Antosiewicz T, Kall M, Shegai T . Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. Phys Rev Lett. 2015; 114(15):157401. DOI: 10.1103/PhysRevLett.114.157401. View

4.
Ebbesen T . Hybrid Light-Matter States in a Molecular and Material Science Perspective. Acc Chem Res. 2016; 49(11):2403-2412. DOI: 10.1021/acs.accounts.6b00295. View

5.
Dovzhenko D, Ryabchuk S, Rakovich Y, Nabiev I . Light-matter interaction in the strong coupling regime: configurations, conditions, and applications. Nanoscale. 2018; 10(8):3589-3605. DOI: 10.1039/c7nr06917k. View