» Articles » PMID: 32053527

Machine Learning Applications in Orthopaedic Imaging

Overview
Publisher Wolters Kluwer
Date 2020 Feb 14
PMID 32053527
Citations 3
Authors
Affiliations
Soon will be listed here.
Citing Articles

Using Google web search to analyze and evaluate the application of ChatGPT in femoroacetabular impingement syndrome.

Chen Y, Zhang S, Tang N, George D, Huang T, Tang J Front Public Health. 2024; 12:1412063.

PMID: 38883198 PMC: 11176516. DOI: 10.3389/fpubh.2024.1412063.


Artificial intelligence-based applications in shoulder surgery leaves much to be desired: a systematic review.

Gupta P, Haeberle H, Zimmer Z, Levine W, Williams R, Ramkumar P JSES Rev Rep Tech. 2023; 3(2):189-200.

PMID: 37588443 PMC: 10426484. DOI: 10.1016/j.xrrt.2022.12.006.


A novel application of neural networks to identify potentially effective combinations of biologic factors for enhancement of bone fusion/repair.

Anastasio A, Zinger B, Anastasio T PLoS One. 2022; 17(11):e0276562.

PMID: 36318539 PMC: 9624421. DOI: 10.1371/journal.pone.0276562.

References
1.
DeVries Z, Hoda M, Rivers C, Maher A, Wai E, Moravek D . Development of an unsupervised machine learning algorithm for the prognostication of walking ability in spinal cord injury patients. Spine J. 2019; 20(2):213-224. DOI: 10.1016/j.spinee.2019.09.007. View

2.
Bien N, Rajpurkar P, Ball R, Irvin J, Park A, Jones E . Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med. 2018; 15(11):e1002699. PMC: 6258509. DOI: 10.1371/journal.pmed.1002699. View

3.
Bahl M, Barzilay R, Yedidia A, Locascio N, Yu L, Lehman C . High-Risk Breast Lesions: A Machine Learning Model to Predict Pathologic Upgrade and Reduce Unnecessary Surgical Excision. Radiology. 2017; 286(3):810-818. DOI: 10.1148/radiol.2017170549. View

4.
Prasoon A, Petersen K, Igel C, Lauze F, Dam E, Nielsen M . Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. Med Image Comput Comput Assist Interv. 2014; 16(Pt 2):246-53. DOI: 10.1007/978-3-642-40763-5_31. View

5.
Pesapane F, Codari M, Sardanelli F . Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp. 2018; 2(1):35. PMC: 6199205. DOI: 10.1186/s41747-018-0061-6. View