» Articles » PMID: 32051251

A Three-dimensional Hybrid Electrode with Electroactive Microbes for Efficient Electrogenesis and Chemical Synthesis

Overview
Specialty Science
Date 2020 Feb 14
PMID 32051251
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Integration of electroactive bacteria into electrodes combines strengths of intracellular biochemistry with electrochemistry for energy conversion and chemical synthesis. However, such biohybrid systems are often plagued with suboptimal electrodes, which limits the incorporation and productivity of the bacterial colony. Here, we show that an inverse opal-indium tin oxide electrode hosts a large population of current-producing and attains a current density of 3 mA cm stemming from bacterial respiration. Differential gene expression analysis revealed 's transcriptional regulations to express more electron-relaying proteins when interfaced with electrodes. The electrode also allows coculturing with for syntrophic electrogenesis, which grants the system additional flexibility in converting electron donors. The biohybrid electrode containing can also catalyze the reduction of soluble fumarate and heterogenous graphene oxide, with electrons from an external power source or an irradiated photoanode. This biohybrid electrode represents a platform to employ live cells for sustainable power generation and biosynthesis.

Citing Articles

Engineering Microbial Consortia as Living Materials: Advances and Prospectives.

Wang S, Zhan Y, Jiang X, Lai Y ACS Synth Biol. 2024; 13(9):2653-2666.

PMID: 39174016 PMC: 11421429. DOI: 10.1021/acssynbio.4c00313.


Advances in Engineered Nano-Biosensors for Bacteria Diagnosis and Multidrug Resistance Inhibition.

Xia Q, Jiang H, Liu X, Yin L, Wang X Biosensors (Basel). 2024; 14(2).

PMID: 38391978 PMC: 10887026. DOI: 10.3390/bios14020059.


Operando film-electrochemical EPR spectroscopy tracks radical intermediates in surface-immobilized catalysts.

Seif-Eddine M, Cobb S, Dang Y, Abdiaziz K, Bajada M, Reisner E Nat Chem. 2024; 16(6):1015-1023.

PMID: 38355827 PMC: 11636982. DOI: 10.1038/s41557-024-01450-y.


Microalgae-material hybrid for enhanced photosynthetic energy conversion: a promising path towards carbon neutrality.

Xiong W, Peng Y, Ma W, Xu X, Zhao Y, Wu J Natl Sci Rev. 2023; 10(10):nwad200.

PMID: 37671320 PMC: 10476897. DOI: 10.1093/nsr/nwad200.


Enhanced transmembrane electron transfer in MR-1 using gold nanoparticles for high-performance microbial fuel cells.

Jiang Y, Hui S, Tian S, Chen Z, Chai Y, Jiang L Nanoscale Adv. 2023; 5(1):124-132.

PMID: 36605799 PMC: 9765428. DOI: 10.1039/d2na00638c.


References
1.
Li S, Cheng C, Thomas A . Carbon-Based Microbial-Fuel-Cell Electrodes: From Conductive Supports to Active Catalysts. Adv Mater. 2016; 29(8). DOI: 10.1002/adma.201602547. View

2.
Lee J, Na D, Park J, Lee J, Choi S, Lee S . Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol. 2012; 8(6):536-46. DOI: 10.1038/nchembio.970. View

3.
Rabaey K, Rozendal R . Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol. 2010; 8(10):706-16. DOI: 10.1038/nrmicro2422. View

4.
Strycharz-Glaven S, Tender L . Study of the mechanism of catalytic activity of G. sulfurreducens biofilm anodes during biofilm growth. ChemSusChem. 2012; 5(6):1106-18. DOI: 10.1002/cssc.201100737. View

5.
Methe B, Nelson K, Eisen J, Paulsen I, Nelson W, Heidelberg J . Genome of Geobacter sulfurreducens: metal reduction in subsurface environments. Science. 2003; 302(5652):1967-9. DOI: 10.1126/science.1088727. View