» Articles » PMID: 32049032

Allosteric Activation of PI3Kα Results in Dynamic Access to Catalytically Competent Conformations

Overview
Journal Structure
Publisher Cell Press
Date 2020 Feb 13
PMID 32049032
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Class I phosphoinositide-3-kinases (PI3Ks) phosphorylate PIP at its 3' inositol position to generate PIP, a second messenger that influences signaling cascades regulating cellular growth, survival, and proliferation. Previous studies have suggested that PI3Kα activation involves dislodging the p85α nSH2 domain from the p110α catalytic subunit by binding activated receptor tyrosine kinases. We carried out molecular dynamics simulations to determine, mechanistically and structurally, how PI3Kα conformations are influenced by physiological effectors and the nSH2 domain. We demonstrate that changes in protein dynamics mediated by allosteric regulation significantly increase the population of catalytically competent states without changing the enzyme ground-state structure. Furthermore, we demonstrate that modulation of active-site residue interactions with enzyme substrates can reciprocally influence nSH2 domain dynamics. Together, these results suggest that dynamic allostery plays a role in populating the catalytically competent conformation of PI3Kα, and provide a key platform for the design of novel chemotherapeutic PI3Kα inhibitors.

Citing Articles

Understanding the conformational dynamics of PI3Kα due to helical domain mutations: insights from Markov state model analysis.

Jani V, Sonavane U, Sawant S Mol Divers. 2025; .

PMID: 39982680 DOI: 10.1007/s11030-025-11138-1.


ATP-competitive inhibitors of PI3K enzymes demonstrate an isoform selective dual action by controlling membrane binding.

Gong G, Masson G, Lee W, Dickson J, Kendall J, Rathinaswamy M Biochem J. 2024; 481(23):1787-1802.

PMID: 39485310 PMC: 7617104. DOI: 10.1042/BCJ20240479.


Free energy landscape of the PI3Kα C-terminal activation.

Kotzampasi D, Papadourakis M, Burke J, Cournia Z Comput Struct Biotechnol J. 2024; 23:3118-3131.

PMID: 39229338 PMC: 11369385. DOI: 10.1016/j.csbj.2024.07.010.


Discovery and Clinical Proof-of-Concept of RLY-2608, a First-in-Class Mutant-Selective Allosteric PI3Kα Inhibitor That Decouples Antitumor Activity from Hyperinsulinemia.

Varkaris A, Pazolli E, Gunaydin H, Wang Q, Pierce L, Boezio A Cancer Discov. 2023; 14(2):240-257.

PMID: 37916956 PMC: 10850943. DOI: 10.1158/2159-8290.CD-23-0944.


Oncogenic mutations of PIK3CA lead to increased membrane recruitment driven by reorientation of the ABD, p85 and C-terminus.

Jenkins M, Ranga-Prasad H, Parson M, Harris N, Rathinaswamy M, Burke J Nat Commun. 2023; 14(1):181.

PMID: 36635288 PMC: 9837058. DOI: 10.1038/s41467-023-35789-6.


References
1.
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J . CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem. 2009; 31(4):671-90. PMC: 2888302. DOI: 10.1002/jcc.21367. View

2.
Campitelli P, Guo J, Zhou H, Ozkan S . Hinge-Shift Mechanism Modulates Allosteric Regulations in Human Pin1. J Phys Chem B. 2018; 122(21):5623-5629. PMC: 5980714. DOI: 10.1021/acs.jpcb.7b11971. View

3.
Huang C, Mandelker D, Gabelli S, Amzel L . Insights into the oncogenic effects of PIK3CA mutations from the structure of p110alpha/p85alpha. Cell Cycle. 2008; 7(9):1151-6. PMC: 3260475. DOI: 10.4161/cc.7.9.5817. View

4.
WALKER E, Perisic O, Ried C, Stephens L, Williams R . Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature. 1999; 402(6759):313-20. DOI: 10.1038/46319. View

5.
Tse A, Verkhivker G . Molecular Dynamics Simulations and Structural Network Analysis of c-Abl and c-Src Kinase Core Proteins: Capturing Allosteric Mechanisms and Communication Pathways from Residue Centrality. J Chem Inf Model. 2015; 55(8):1645-62. DOI: 10.1021/acs.jcim.5b00240. View