» Articles » PMID: 32042331

Molecular Imaging Biomarkers for Immune Checkpoint Inhibitor Therapy

Overview
Journal Theranostics
Date 2020 Feb 12
PMID 32042331
Citations 37
Authors
Affiliations
Soon will be listed here.
Abstract

Immune checkpoint inhibitors (ICIs) have substantially changed the field of oncology over the past few years. ICIs offer an alternative treatment strategy by exploiting the patients' immune system, resulting in a T cell mediated anti-tumor response. These therapies are effective in multiple different tumor types. Unfortunately, a substantial group of patients do not respond to ICIs. Molecular imaging, using single-photon emission computed tomography (SPECT) and positron emission tomography (PET), can provide non-invasive whole-body visualization of tumor and immune cell characteristics and might support patient selection or response evaluations for ICI therapies. In this review, recent studies with F-fluorodeoxyglucose-PET imaging, imaging of immune checkpoints and imaging of immune cells will be discussed. These studies are until now mainly exploratory, but the first results suggest that molecular imaging biomarkers could have a role in the evaluation of ICI therapy.

Citing Articles

Advancing precision cancer immunotherapy drug development, administration, and response prediction with AI-enabled Raman spectroscopy.

Chadokiya J, Chang K, Sharma S, Hu J, Lill J, Dionne J Front Immunol. 2025; 15():1520860.

PMID: 39850874 PMC: 11753970. DOI: 10.3389/fimmu.2024.1520860.


Zirconium 89 and Copper 64 for ImmunoPET: From Antibody Bioconjugation and Radiolabeling to Molecular Imaging.

Badier L, Quelven I Pharmaceutics. 2024; 16(7).

PMID: 39065579 PMC: 11279968. DOI: 10.3390/pharmaceutics16070882.


Peptide-based PET tracer targeting LAG-3 for evaluating the efficacy of immunotherapy in melanoma.

Yuan P, Long Y, Wei N, Wang Y, Zhu Z, Han J J Immunother Cancer. 2024; 12(7).

PMID: 39043603 PMC: 11284866. DOI: 10.1136/jitc-2024-009010.


Prognostic value of systemic immune-inflammation index/albumin ratio for immunotherapy-treated patients receiving opioids.

Yan L, Kang P, Cao C, Jinhui B, Yong L PLoS One. 2024; 19(6):e0305119.

PMID: 38935663 PMC: 11210763. DOI: 10.1371/journal.pone.0305119.


The development process of 'fit-for-purpose' imaging biomarkers to characterize the tumor microenvironment.

Eertink J, Bahce I, Waterton J, Huisman M, Boellaard R, Wunder A Front Med (Lausanne). 2024; 11:1347267.

PMID: 38818386 PMC: 11138661. DOI: 10.3389/fmed.2024.1347267.


References
1.
Pitt J, Marabelle A, Eggermont A, Soria J, Kroemer G, Zitvogel L . Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016; 27(8):1482-92. DOI: 10.1093/annonc/mdw168. View

2.
Borghaei H, Paz-Ares L, Horn L, Spigel D, Steins M, Ready N . Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer. N Engl J Med. 2015; 373(17):1627-39. PMC: 5705936. DOI: 10.1056/NEJMoa1507643. View

3.
Mariathasan S, Turley S, Nickles D, Castiglioni A, Yuen K, Wang Y . TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018; 554(7693):544-548. PMC: 6028240. DOI: 10.1038/nature25501. View

4.
Jagoda E, Vasalatiy O, Basuli F, Opina A, Williams M, Wong K . Immuno-PET Imaging of the Programmed Cell Death-1 Ligand (PD-L1) Using a Zirconium-89 Labeled Therapeutic Antibody, Avelumab. Mol Imaging. 2019; 18:1536012119829986. PMC: 6498777. DOI: 10.1177/1536012119829986. View

5.
Vilain R, Menzies A, Wilmott J, Kakavand H, Madore J, Guminski A . Dynamic Changes in PD-L1 Expression and Immune Infiltrates Early During Treatment Predict Response to PD-1 Blockade in Melanoma. Clin Cancer Res. 2017; 23(17):5024-5033. DOI: 10.1158/1078-0432.CCR-16-0698. View