» Articles » PMID: 32041363

Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research

Overview
Publisher MDPI
Date 2020 Feb 12
PMID 32041363
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

This article aims to provide an overview of broad range of applications of synchrotron scattering methods in the investigation of nanoscale materials. These scattering techniques allow the elucidation of the structure and dynamics of nanomaterials from sub-nm to micron size scales and down to sub-millisecond time ranges both in bulk and at interfaces. A major advantage of scattering methods is that they provide the ensemble averaged information under in situ and operando conditions. As a result, they are complementary to various imaging techniques which reveal more local information. Scattering methods are particularly suitable for probing buried structures that are difficult to image. Although, many qualitative features can be directly extracted from scattering data, derivation of detailed structural and dynamical information requires quantitative modeling. The fourth-generation synchrotron sources open new possibilities for investigating these complex systems by exploiting the enhanced brightness and coherence properties of X-rays.

Citing Articles

Opportunities and new developments for the study of surfaces and interfaces in soft condensed matter at the SIRIUS beamline of Synchrotron SOLEIL.

Hemmerle A, Aubert N, Moreno T, Kekicheff P, Heinrich B, Spagnoli S J Synchrotron Radiat. 2023; 31(Pt 1):162-176.

PMID: 37933848 PMC: 10833424. DOI: 10.1107/S1600577523008810.


Improvement of ultra-small-angle XPCS with the Extremely Brilliant Source.

Chevremont W, Zinn T, Narayanan T J Synchrotron Radiat. 2023; 31(Pt 1):65-76.

PMID: 37933847 PMC: 10833426. DOI: 10.1107/S1600577523008627.


Small-angle X-ray scattering in the era of fourth-generation light sources.

Narayanan T, Chevremont W, Zinn T J Appl Crystallogr. 2023; 56(Pt 4):939-946.

PMID: 37555224 PMC: 10405582. DOI: 10.1107/S1600576723004971.


Quantification of nanoparticles' concentration inside polymer films using lock-in thermography.

Mirabello G, Steinmetz L, Geers C, Rothen-Ruthishauser B, Bonmarin M, Petri-Fink A Nanoscale Adv. 2023; 5(11):2963-2972.

PMID: 37260492 PMC: 10228360. DOI: 10.1039/d3na00091e.


Cubosomes in Drug Delivery-A Comprehensive Review on Its Structural Components, Preparation Techniques and Therapeutic Applications.

Sivadasan D, Sultan M, Alqahtani S, Javed S Biomedicines. 2023; 11(4).

PMID: 37189732 PMC: 10135881. DOI: 10.3390/biomedicines11041114.


References
1.
Geuchies J, Overbeek C, Evers W, Goris B, De Backer A, Gantapara A . In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat Mater. 2016; 15(12):1248-1254. DOI: 10.1038/nmat4746. View

2.
Dattani R, Semeraro E, Narayanan T . Phoretic motion of colloids in a phase separating medium. Soft Matter. 2017; 13(15):2817-2822. DOI: 10.1039/c6sm02855a. View

3.
Schneck E, Schubert T, Konovalov O, Quinn B, Gutsmann T, Brandenburg K . Quantitative determination of ion distributions in bacterial lipopolysaccharide membranes by grazing-incidence X-ray fluorescence. Proc Natl Acad Sci U S A. 2010; 107(20):9147-51. PMC: 2889051. DOI: 10.1073/pnas.0913737107. View

4.
Bauer P, Amenitsch H, Baumgartner B, Koberl G, Rentenberger C, Winkler P . In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction. Nat Commun. 2019; 10(1):1122. PMC: 6408461. DOI: 10.1038/s41467-019-09066-4. View

5.
Vatankhah-Varnosfaderani M, Keith A, Cong Y, Liang H, Rosenthal M, Sztucki M . Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science. 2018; 359(6383):1509-1513. DOI: 10.1126/science.aar5308. View