» Articles » PMID: 32034281

Mixotrophy in Marine Picocyanobacteria: Use of Organic Compounds by Prochlorococcus and Synechococcus

Overview
Journal ISME J
Date 2020 Feb 9
PMID 32034281
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Marine picocyanobacteria of the Prochlorococcus and Synechococcus genera have been longtime considered as autotrophic organisms. However, compelling evidence published over the last 15 years shows that these organisms can use different organic compounds containing key elements to survive in oligotrophic oceans, such as N (amino acids, amino sugars), S (dimethylsulfoniopropionate, DMSP), or P (ATP). Furthermore, marine picocyanobacteria can also take up glucose and use it as a source of carbon and energy, despite the fact that this compound is devoid of limiting elements and can also be synthesized by using standard metabolic pathways. This review will outline the main findings suggesting mixotrophy in the marine picocyanobacteria Prochlorococcus and Synechococcus, and its ecological relevance for these important primary producers.

Citing Articles

Wide-ranging organic nitrogen diets of freshwater picocyanobacteria.

Druce E, Maberly S, Sanchez-Baracaldo P ISME J. 2025; 19(1).

PMID: 39987554 PMC: 11851481. DOI: 10.1093/ismejo/wrae236.


Picophytoplankton prevail year-round in the Elbe estuary.

Martens N, Biederbick J, Schaum C Plant Environ Interact. 2024; 5(5):e70014.

PMID: 39464516 PMC: 11513158. DOI: 10.1002/pei3.70014.


Mixed and membrane-separated culturing of synthetic cyanobacteria-yeast consortia reveals metabolic cross-talk mimicking natural cyanolichens.

Bohutskyi P, Pomraning K, Jenkins J, Kim Y, Poirier B, Betenbaugh M Sci Rep. 2024; 14(1):25303.

PMID: 39455633 PMC: 11511929. DOI: 10.1038/s41598-024-74743-4.


Nitrogen uptake rates and phytoplankton composition across contrasting North Atlantic Ocean coastal regimes north and south of Cape Hatteras.

Zhu Y, Mulholland M, Bernhardt P, Neeley A, Widner B, Tapia A Front Microbiol. 2024; 15:1380179.

PMID: 38784802 PMC: 11113559. DOI: 10.3389/fmicb.2024.1380179.


A synthetic biology approach for the treatment of pollutants with microalgae.

Webster L, Villa-Gomez D, Brown R, Clarke W, Schenk P Front Bioeng Biotechnol. 2024; 12:1379301.

PMID: 38646010 PMC: 11032018. DOI: 10.3389/fbioe.2024.1379301.


References
1.
Karl D . Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol. 2007; 5(10):759-69. DOI: 10.1038/nrmicro1749. View

2.
Zubkov M, Fuchs B, Tarran G, Burkill P, Amann R . High rate of uptake of organic nitrogen compounds by Prochlorococcus cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol. 2003; 69(2):1299-304. PMC: 143617. DOI: 10.1128/AEM.69.2.1299-1304.2003. View

3.
Braakman R, Follows M, Chisholm S . Metabolic evolution and the self-organization of ecosystems. Proc Natl Acad Sci U S A. 2017; 114(15):E3091-E3100. PMC: 5393222. DOI: 10.1073/pnas.1619573114. View

4.
Soler N, Krupovic M, Marguet E, Forterre P . Membrane vesicles in natural environments: a major challenge in viral ecology. ISME J. 2014; 9(4):793-6. PMC: 4817693. DOI: 10.1038/ismej.2014.184. View

5.
Yelton A, Acinas S, Sunagawa S, Bork P, Pedros-Alio C, Chisholm S . Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 2016; 10(12):2946-2957. PMC: 5148188. DOI: 10.1038/ismej.2016.64. View