» Articles » PMID: 32029595

Anharmonic Lattice Dynamics and Superionic Transition in AgCrSe

Overview
Specialty Science
Date 2020 Feb 8
PMID 32029595
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Intrinsically low lattice thermal conductivity ([Formula: see text]) in superionic conductors is of great interest for energy conversion applications in thermoelectrics. Yet, the complex atomic dynamics leading to superionicity and ultralow thermal conductivity remain poorly understood. Here, we report a comprehensive study of the lattice dynamics and superionic diffusion in [Formula: see text] from energy- and momentum-resolved neutron and X-ray scattering techniques, combined with first-principles calculations. Our results settle unresolved questions about the lattice dynamics and thermal conduction mechanism in [Formula: see text] We find that the heat-carrying long-wavelength transverse acoustic (TA) phonons coexist with the ultrafast diffusion of Ag ions in the superionic phase, while the short-wavelength nondispersive TA phonons break down. Strong scattering of phonon quasiparticles by anharmonicity and Ag disorder are the origin of intrinsically low [Formula: see text] The breakdown of short-wavelength TA phonons is directly related to the Ag diffusion, with the vibrational spectral weight associated to Ag oscillations evolving into stochastic decaying fluctuations. Furthermore, the origin of fast ionic diffusion is shown to arise from extended flat basins in the energy landscape and collective hopping behavior facilitated by strong repulsion between Ag ions. These results provide fundamental insights into the complex atomic dynamics of superionic conductors.

Citing Articles

Inherent Anharmonicity of Harmonic Solids.

Agne M, Anand S, Snyder G Research (Wash D C). 2024; 2022:9786705.

PMID: 38617551 PMC: 11014735. DOI: 10.34133/2022/9786705.


How Concerted Are Ionic Hops in Inorganic Solid-State Electrolytes?.

Lopez C, Rurali R, Cazorla C J Am Chem Soc. 2024; 146(12):8269-8279.

PMID: 38498973 PMC: 11583204. DOI: 10.1021/jacs.3c13279.


Observation of the Anomalous Hall Effect in a Layered Polar Semiconductor.

Kim S, Zhu J, Piva M, Schmidt M, Fartab D, Mackenzie A Adv Sci (Weinh). 2023; 11(6):e2307306.

PMID: 38063838 PMC: 10853720. DOI: 10.1002/advs.202307306.


Dynamic correlations and possible diffusion pathway in the superionic conductor CuSe.

Roth N, Iversen B IUCrJ. 2023; 10(Pt 2):199-209.

PMID: 36794872 PMC: 9980382. DOI: 10.1107/S2052252523001318.


Anharmonic Lattice Dynamics in Sodium Ion Conductors.

Brenner T, Grumet M, Till P, Asher M, Zeier W, Egger D J Phys Chem Lett. 2022; 13(25):5938-5945.

PMID: 35731950 PMC: 9251760. DOI: 10.1021/acs.jpclett.2c00904.


References
1.
He X, Zhu Y, Mo Y . Origin of fast ion diffusion in super-ionic conductors. Nat Commun. 2017; 8:15893. PMC: 5482052. DOI: 10.1038/ncomms15893. View

2.
Kresse , Hafner . Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter. 1993; 47(1):558-561. DOI: 10.1103/physrevb.47.558. View

3.
Ma J, Delaire O, May A, Carlton C, McGuire M, VanBebber L . Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat Nanotechnol. 2013; 8(6):445-51. DOI: 10.1038/nnano.2013.95. View

4.
Qiu P, Agne M, Liu Y, Zhu Y, Chen H, Mao T . Suppression of atom motion and metal deposition in mixed ionic electronic conductors. Nat Commun. 2018; 9(1):2910. PMC: 6060128. DOI: 10.1038/s41467-018-05248-8. View

5.
Voneshen D, Refson K, Borissenko E, Krisch M, Bosak A, Piovano A . Suppression of thermal conductivity by rattling modes in thermoelectric sodium cobaltate. Nat Mater. 2013; 12(11):1028-32. DOI: 10.1038/nmat3739. View