» Articles » PMID: 32014553

Imaging Brain Function with Simultaneous BOLD and Viscoelasticity Contrast: FMRI/fMRE

Overview
Journal Neuroimage
Specialty Radiology
Date 2020 Feb 5
PMID 32014553
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Magnetic resonance elastography (MRE) is emerging as a new tool for studying viscoelastic changes in the brain resulting from functional processes. Here, we demonstrate a novel time series method to generate robust functional magnetic resonance elastography (fMRE) activation maps in response to a visual task with a flashing checkerboard stimulus. Using a single-shot spin-echo (SS-SE) pulse sequence, the underlying raw images inherently contain blood-oxygen-level dependent (BOLD) contrast, allowing simultaneous generation of functional magnetic resonance imaging (fMRI) activation maps from the magnitude and functional magnetic resonance elastography (fMRE) maps from the phase. This allows an accurate comparison of the spatially localized stiffness (fMRE) and BOLD (fMRI) changes within a single scan, eliminating confounds inherent in separately acquired scans. Results indicate that tissue stiffness within the visual cortex increases 6-11% with visual stimuli, whereas the BOLD signal change was 1-2%. Furthermore, the fMRE and fMRI activation maps have strong spatial overlap within the visual cortex, providing convincing evidence that fMRE is possible in the brain. However, the fMRE temporal SNR (tSNR) maps are heterogeneous across the brain. Using a dictionary matching approach to characterize the time series, the viscoelastic changes are consistent with a viscoelastic response function (VRF) time constant of 12.1 ​s ± 3.0 ​s for a first-order exponential decay, or a shape parameter of 8.1 ​s ± 1.4 ​s for a gamma-variate.

Citing Articles

High-frequency shear wave MR elastography of parotid glands: custom driver design and preliminary results.

Atamaniuk V, Chen J, Obrzut M, Glaser K, Hanczyk L, Pozaruk A Sci Rep. 2024; 14(1):24496.

PMID: 39424898 PMC: 11489586. DOI: 10.1038/s41598-024-75806-2.


Mechanobiological insight into brain diseases based on mechanosensitive channels: Common mechanisms and clinical potential.

Li B, Zhao A, Tian T, Yang X CNS Neurosci Ther. 2024; 30(6):e14809.

PMID: 38923822 PMC: 11197048. DOI: 10.1111/cns.14809.


The Networking Brain: How Extracellular Matrix, Cellular Networks, and Vasculature Shape the In Vivo Mechanical Properties of the Brain.

Bergs J, Morr A, Silva R, Infante-Duarte C, Sack I Adv Sci (Weinh). 2024; 11(31):e2402338.

PMID: 38874205 PMC: 11336943. DOI: 10.1002/advs.202402338.


Estimating the viscoelastic properties of the human brain at 7 T MRI using intrinsic MRE and nonlinear inversion.

Burman Ingeberg M, Van Houten E, Zwanenburg J Hum Brain Mapp. 2023; 44(18):6575-6591.

PMID: 37909395 PMC: 10681656. DOI: 10.1002/hbm.26524.


Cerebral tomoelastography based on multifrequency MR elastography in two and three dimensions.

Herthum H, Hetzer S, Kreft B, Tzschatzsch H, Shahryari M, Meyer T Front Bioeng Biotechnol. 2022; 10:1056131.

PMID: 36532573 PMC: 9755504. DOI: 10.3389/fbioe.2022.1056131.


References
1.
Parker K . A microchannel flow model for soft tissue elasticity. Phys Med Biol. 2014; 59(15):4443-57. DOI: 10.1088/0031-9155/59/15/4443. View

2.
Hetzer S, Dittmann F, Bormann K, Hirsch S, Lipp A, Wang D . Hypercapnia increases brain viscoelasticity. J Cereb Blood Flow Metab. 2018; 39(12):2445-2455. PMC: 6893988. DOI: 10.1177/0271678X18799241. View

3.
Arani A, Murphy M, Glaser K, Manduca A, Lake D, Kruse S . Measuring the effects of aging and sex on regional brain stiffness with MR elastography in healthy older adults. Neuroimage. 2015; 111:59-64. PMC: 4387012. DOI: 10.1016/j.neuroimage.2015.02.016. View

4.
Pepin K, Ehman R, McGee K . Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. Prog Nucl Magn Reson Spectrosc. 2015; 90-91:32-48. PMC: 4660259. DOI: 10.1016/j.pnmrs.2015.06.001. View

5.
Parker K . Are rapid changes in brain elasticity possible?. Phys Med Biol. 2017; 62(18):7425-7439. DOI: 10.1088/1361-6560/aa8380. View