» Articles » PMID: 31995757

The Functional Organization of Cortical and Thalamic Inputs Onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities

Overview
Journal Cell Rep
Publisher Cell Press
Date 2020 Jan 30
PMID 31995757
Citations 40
Authors
Affiliations
Soon will be listed here.
Abstract

To understand striatal function, it is essential to know the functional organization of the numerous inputs targeting the diverse population of striatal neurons. Using optogenetics, we activated terminals from ipsi- or contralateral primary somatosensory cortex (S1) or primary motor cortex (M1), or thalamus while obtaining simultaneous whole-cell recordings from pairs or triplets of striatal medium spiny neurons (MSNs) and adjacent interneurons. Ipsilateral corticostriatal projections provided stronger excitation to fast-spiking interneurons (FSIs) than to MSNs and only sparse and weak excitation to low threshold-spiking interneurons (LTSIs) and cholinergic interneurons (ChINs). Projections from contralateral M1 evoked the strongest responses in LTSIs but none in ChINs, whereas thalamus provided the strongest excitation to ChINs but none to LTSIs. In addition, inputs varied in their glutamate receptor composition and their short-term plasticity. Our data revealed a highly selective organization of excitatory striatal afferents, which is determined by both pre- and postsynaptic neuronal identity.

Citing Articles

Beta-frequency sensory stimulation enhances gait rhythmicity through strengthened coupling between striatal networks and stepping movement.

Sridhar S, Lowet E, Gritton H, Freire J, Zhou C, Liang F Nat Commun. 2024; 15(1):8336.

PMID: 39333151 PMC: 11437063. DOI: 10.1038/s41467-024-52664-0.


Synaptic integration of somatosensory and motor cortical inputs onto spiny projection neurons of mice caudoputamen.

Sampathkumar V, Koster K, Carroll B, Sherman S, Kasthuri N Eur J Neurosci. 2024; 60(8):6107-6122.

PMID: 39315531 PMC: 11483202. DOI: 10.1111/ejn.16538.


Symmetry in Frontal But Not Motor and Somatosensory Cortical Projections.

Papale A, Harish M, Paletzki R, OConnor N, Eastwood B, Seal R J Neurosci. 2024; 44(33).

PMID: 38937102 PMC: 11326871. DOI: 10.1523/JNEUROSCI.1195-23.2024.


The Interactions of Temporal and Sensory Representations in the Basal Ganglia.

Rueda-Orozco P, Hidalgo-Balbuena A, Gonzalez-Pereyra P, Martinez-Montalvo M, Baez-Cordero A Adv Exp Med Biol. 2024; 1455:141-158.

PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8.


Role of Posterior Medial Thalamus in the Modulation of Striatal Circuitry and Choice Behavior.

Yonk A, Linares-Garcia I, Pasternak L, Juliani S, Gradwell M, George A bioRxiv. 2024; .

PMID: 38585753 PMC: 10996534. DOI: 10.1101/2024.03.21.586152.


References
1.
Lacey C, Bolam J, Magill P . Novel and distinct operational principles of intralaminar thalamic neurons and their striatal projections. J Neurosci. 2007; 27(16):4374-84. PMC: 6672301. DOI: 10.1523/JNEUROSCI.5519-06.2007. View

2.
Calabresi P, Gubellini P, Centonze D, Sancesario G, Morello M, Giorgi M . A critical role of the nitric oxide/cGMP pathway in corticostriatal long-term depression. J Neurosci. 1999; 19(7):2489-99. PMC: 6786075. View

3.
Adewale A, Macarthur H, Westfall T . Neuropeptide Y-induced enhancement of the evoked release of newly synthesized dopamine in rat striatum: mediation by Y2 receptors. Neuropharmacology. 2007; 52(6):1396-402. DOI: 10.1016/j.neuropharm.2007.01.018. View

4.
Pelkey K, McBain C . Differential regulation at functionally divergent release sites along a common axon. Curr Opin Neurobiol. 2007; 17(3):366-73. DOI: 10.1016/j.conb.2007.04.008. View

5.
Zucker R . Calcium- and activity-dependent synaptic plasticity. Curr Opin Neurobiol. 1999; 9(3):305-13. DOI: 10.1016/s0959-4388(99)80045-2. View