» Articles » PMID: 31990274

Guanidine Hydrochloride Reactivates an Ancient Septin Hetero-oligomer Assembly Pathway in Budding Yeast

Overview
Journal Elife
Specialty Biology
Date 2020 Jan 29
PMID 31990274
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Septin proteins evolved from ancestral GTPases and co-assemble into hetero-oligomers and cytoskeletal filaments. In , five septins comprise two species of hetero-octamers, Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs1. Slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1, but many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that guanidine hydrochloride rescues septin function in mutants by promoting assembly of non-native Cdc11/Shs1-Cdc12-Cdc3-Cdc3-Cdc12-Cdc11/Shs1 hexamers. We provide evidence that in Cdc3 guanidinium occupies the site of a 'missing' Arg side chain found in other fungal species where (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers natively co-exist with octamers. We propose that guanidinium reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to octamers. Since homodimerization by a GTPase-active human septin also creates hexamers that exclude Cdc10-like central subunits, our new mechanistic insights likely apply throughout phylogeny.

Citing Articles

Stepwise order in protein complex assembly: approaches and emerging themes.

Brown M, McMurray M Open Biol. 2025; 15(1):240283.

PMID: 39809320 PMC: 11732423. DOI: 10.1098/rsob.240283.


Evolutionary degeneration of septins into pseudoGTPases: impacts on a hetero-oligomeric assembly interface.

Hussain A, Nguyen V, Reigan P, McMurray M Front Cell Dev Biol. 2023; 11:1296657.

PMID: 38125875 PMC: 10731463. DOI: 10.3389/fcell.2023.1296657.


Simultaneous co-overexpression of Saccharomyces cerevisiae septins Cdc3 and Cdc10 drives pervasive, phospholipid-, and tag-dependent plasma membrane localization.

Benson A, McMurray M Cytoskeleton (Hoboken). 2023; 80(7-8):199-214.

PMID: 37098755 PMC: 10524705. DOI: 10.1002/cm.21762.


Chaperone requirements for de novo folding of septins.

Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J Mol Biol Cell. 2022; 33(12):ar111.

PMID: 35947497 PMC: 9635297. DOI: 10.1091/mbc.E22-07-0262.


The Structural Biology of Septins and Their Filaments: An Update.

Cavini I, Leonardo D, Rosa H, Castro D, Pereira H, Valadares N Front Cell Dev Biol. 2021; 9:765085.

PMID: 34869357 PMC: 8640212. DOI: 10.3389/fcell.2021.765085.


References
1.
Abbey M, Hakim C, Anand R, Lafera J, Schambach A, Kispert A . GTPase domain driven dimerization of SEPT7 is dispensable for the critical role of septins in fibroblast cytokinesis. Sci Rep. 2016; 6:20007. PMC: 4730212. DOI: 10.1038/srep20007. View

2.
Derkatch I, Bradley M, Zhou P, Chernoff Y, Liebman S . Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics. 1997; 147(2):507-19. PMC: 1208174. DOI: 10.1093/genetics/147.2.507. View

3.
Pringle J, Preston R, Adams A, Stearns T, Drubin D, Haarer B . Fluorescence microscopy methods for yeast. Methods Cell Biol. 1989; 31:357-435. DOI: 10.1016/s0091-679x(08)61620-9. View

4.
Heasley L, McMurray M . Roles of septins in prospore membrane morphogenesis and spore wall assembly in Saccharomyces cerevisiae. Mol Biol Cell. 2015; 27(3):442-50. PMC: 4751596. DOI: 10.1091/mbc.E15-10-0721. View

5.
Akhmetov A, Laurent J, Gollihar J, Gardner E, Garge R, Ellington A . Single-step Precision Genome Editing in Yeast Using CRISPR-Cas9. Bio Protoc. 2018; 8(6). PMC: 5951413. DOI: 10.21769/BioProtoc.2765. View