» Articles » PMID: 31989275

Electrochemical Sensor Based on An electrode Modified With porous Graphitic Carbon Nitride Nanosheets (CN) embedded in Graphene Oxide for Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid

Overview
Journal Mikrochim Acta
Specialties Biotechnology
Chemistry
Date 2020 Jan 29
PMID 31989275
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Two-dimensional porous graphitic carbon nitride (g-CN) nanosheets were synthesized by low-cost and direct thermal oxidation. Porous g-CN assembled with graphene oxide (GO) was immobilized on a glassy carbon electrode. The sensor was applied to simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) with high performance. Cyclic voltammetry and differential pulse voltammetry were used to investigate electrochemical and electrocatalytic properties. The results indicate that the electrochemical sensor possesses high specific surface area, hierarchical pore structure and excellent signal response to AA, DA and UA. The oxidation potentials are well separated at around 0.15, 0.34 and 0.46 V for AA, DA and UA respectively. The determination limits for AA, DA and UA are 3.7 μM, 0.07 μM and 0.43 μM, respectively. The sensor was applied to tracking the three analytes in spiked serum samples with recovery 95.1~105.5% and relation standard deviations of less than 5%. Graphical abstract Schematic representation of porous graphitic carbon nitride nanosheet embedded in graphene oxide for simultaneous determination of ascorbic acid, dopamine and uric acid.

Citing Articles

Development of Two-Dimensional Functional Nanomaterials for Biosensor Applications: Opportunities, Challenges, and Future Prospects.

Kizhepat S, Rasal A, Chang J, Wu H Nanomaterials (Basel). 2023; 13(9).

PMID: 37177065 PMC: 10180329. DOI: 10.3390/nano13091520.


Nanocomposites with ZrO@S-Doped g-CN as an Enhanced Binder-Free Sensor: Synthesis and Characterization.

Alebachew N, Murthy H, Gonfa B, von Eschwege K, Langner E, Coetsee E ACS Omega. 2023; 8(15):13775-13790.

PMID: 37091396 PMC: 10116625. DOI: 10.1021/acsomega.2c08174.


Selective Voltammetric Detection of Ascorbic Acid from Rosa Canina on a Modified Graphene Oxide Paste Electrode by a Manganese(II) Complex.

Karastogianni S, Diamantidou D, Girousi S Biosensors (Basel). 2021; 11(9).

PMID: 34562884 PMC: 8465974. DOI: 10.3390/bios11090294.


Unveiling the Fundamental Mechanisms of Graphene Oxide Selectivity on the Ascorbic Acid, Dopamine, and Uric Acid by Density Functional Theory Calculations and Charge Population Analysis.

Prasert K, Sutthibutpong T Sensors (Basel). 2021; 21(8).

PMID: 33920002 PMC: 8071017. DOI: 10.3390/s21082773.


Graphitic Carbon Nitride: A Highly Electroactive Nanomaterial for Environmental and Clinical Sensing.

Idris A, Oseghe E, Msagati T, Kuvarega A, Feleni U, Mamba B Sensors (Basel). 2020; 20(20).

PMID: 33050361 PMC: 7600177. DOI: 10.3390/s20205743.

References
1.
Chen Y, Zhang X, Wang A, Zhang Q, Huang H, Feng J . Ultrafine FeC nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine. Mikrochim Acta. 2019; 186(9):660. DOI: 10.1007/s00604-019-3769-y. View

2.
Liu J, Li W, Duan L, Li X, Ji L, Geng Z . A Graphene-like Oxygenated Carbon Nitride Material for Improved Cycle-Life Lithium/Sulfur Batteries. Nano Lett. 2015; 15(8):5137-42. DOI: 10.1021/acs.nanolett.5b01919. View

3.
Liu S, Kurth D, Bredenkotter B, Volkmer D . The structure of self-assembled multilayers with polyoxometalate nanoclusters. J Am Chem Soc. 2002; 124(41):12279-87. DOI: 10.1021/ja026946l. View

4.
Zhao Z, Sun Y, Dong F . Graphitic carbon nitride based nanocomposites: a review. Nanoscale. 2014; 7(1):15-37. DOI: 10.1039/c4nr03008g. View

5.
Wang W, Xu G, Cui X, Sheng G, Luo X . Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosens Bioelectron. 2014; 58:153-6. DOI: 10.1016/j.bios.2014.02.055. View