» Articles » PMID: 31951916

Caenorhabditis Elegans As a Model System for Human Diseases

Overview
Publisher Elsevier
Specialty Biotechnology
Date 2020 Jan 18
PMID 31951916
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

The nematode Caenorhabditis elegans offers unique advantages that enable a comprehensive delineation of the cellular and molecular mechanisms underlying devastating human pathologies such as stroke, ischemia and age-associated neurodegenerative disorders. Genetic models of human diseases that closely simulate several disease-related phenotypes have been established in the worm. These models allow the implementation of multidisciplinary approaches, in addition to large-scale genetic and pharmacological screenings, designed to elucidate the molecular mechanisms mediating pathogenesis and to identify targets and drugs for emergent therapeutic interventions. Such strategies have already provided valuable insights, highly relevant to human health and quality of life. This article considers the potential of C. elegans as a versatile platform for systematic dissection of the molecular basis of human disease, focusing on neurodegenerative disorders.

Citing Articles

From in vivo models to in vitro bioengineered neuromuscular junctions for the study of Charcot-Marie-Tooth disease.

Scherrer C, Loret C, Vedrenne N, Buckley C, Lia A, Kermene V J Tissue Eng. 2025; 16:20417314241310508.

PMID: 40078221 PMC: 11898049. DOI: 10.1177/20417314241310508.


A Consensus Statement on establishing causality, therapeutic applications and the use of preclinical models in microbiome research.

Metwaly A, Kriaa A, Hassani Z, Carraturo F, Druart C, Arnauts K Nat Rev Gastroenterol Hepatol. 2025; .

PMID: 40033063 DOI: 10.1038/s41575-025-01041-3.


Utilizing Spermatogenesis and Fertilization Mutants as a Model for Human Disease.

Perez S, Augustineli H, Marcello M J Dev Biol. 2025; 13(1).

PMID: 39982357 PMC: 11843878. DOI: 10.3390/jdb13010004.


Folates, bacteria and ageing: insights from the model organism in the study of nutrition and ageing.

Weinkove D Proc Nutr Soc. 2024; :1-5.

PMID: 39439268 PMC: 7617194. DOI: 10.1017/S0029665124004890.


Cellular Site-Specific Incorporation of Noncanonical Amino Acids in Synthetic Biology.

Niu W, Guo J Chem Rev. 2024; 124(18):10577-10617.

PMID: 39207844 PMC: 11470805. DOI: 10.1021/acs.chemrev.3c00938.